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INITIAL VALUE PROBLEM AND TRANSIENT GROWTH OF DISTU RBANCE ENERGY (1) 

 
Why is the normal mode analysis insufficient ? 

 

 
1. The NMA is relevant only for the long-time (asymptotic) behavior of the disturbance field. 

 
2. If large transient amplification of disturbances is possible then small perturbations of the flow may 

quickly rise up to the magnitude which is sufficient to trigger nonlinear effects. Then the flow will 
probably evolve to a new (laminar or chaotic) state, even though the Reynolds number ReL is 
subcritical and all normal modes of the undisturbed motion are nominally stable.    

 
 

So what are we going to do? 
 

1. We will calculate the form of the “most dangerous”  (or optimal) disturbances, i.e. such that give 
rise to the largest possible amplification. 

 
2. We will carry out the parametric study of the transient growth phenomenon. 

 
3. We will look at the structures in the disturbance velocity field accompanying the transient growth 

process. 
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INITIAL VALUE PROBLEM AND TRANSIENT GROWTH OF DISTU RBANCE ENERGY (2) 
 

Transient energy growth in the referential Poiseuil le flow 
 
Disturbance velocity field:           .C.C)]zx(iexp[)y,t](g,g,g[)z,y,x,t( wvu +β+δ=v   
 
Initial/boundary value problem (linear theory) is formulated as follows: 
  

OS Eq.           0g})k(]WD)k(W[i)k({ v
22
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0
22

yy0
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yyt =−∂−−−∂β+−∂∂ ,  

 

Sq Eq.             v0
2

yyRe
1

0t gDWi])k(Wi[ δ=θ−∂−β+∂ , ←  forcing term !    

 
Bound.C.         0)1,t()1,t(g)1,t(g vyv =±θ=±∂=± , 

 

Init. C.             )y(g)y,0(g 0
vv =   ,  )y()y,0( 0θ=θ  , 

   

where 2
0 y1)y(W −=   ,  22k β+δ= . 

 
The O-S equation is homogeneous but the Sq equation s contains the forcing term! Even if the 
vertical velocity decay in time it could make the v ertical vorticity grow for some time. The 
growth of the vertical vorticity (if appears) will produce large disturbances of the horizontal 
velocity components.  
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INITIAL VALUE PROBLEM AND TRANSIENT GROWTH OF DISTU RBANCE ENERGY (3) 
  

The following special case in very instructive …  
 
Assume that 0=β . Then all OS and Sq modes are attenuated and not moving, i.e. all eigenvalues are 
purely imaginary and have negative real parts. Consider the initial conditions:  
  

)y(Ĝ)y,0(g vv =  (selected O-S mode),    0)y,0( ≡θ . 
 
The solution of the initial/boundary value problem can be written as   
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where: 
 

       OSOS ˆiˆ ζ−=σ   - purely imaginary eigenvalue of the selected O-S mode, 0ˆ OS >ζ , 

       Sq
j

Sq
j i ζ−=σ    -  purely imaginary eigenvalue of all Sq modes, 0Sq

j >ζ . 
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INITIAL VALUE PROBLEM AND TRANSIENT GROWTH OF DISTU RBANCE ENERGY (4) 
 

Special case continued …  
 

For short times we can expand in the power series and get 
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For 0=β  we have   )y,t(gi)y,t( wδ−=θ    hence   )t(Ot)y,0(g)y(DW)y,t(g 2
v0w +−≈

444 3444 21
GROWTHLINEARTRANSIENT

. 

 
 
For a short time interval we have                   
 

t)y,t(g)y(DW)y,tt(g v0w ∆−≈∆+ , 
 
which is interpreted physically as the 
  
                 LIFT-UP EFFECT 
 

∼ gv(t,y) ∆t

∼ -DW(y) g v(t,y) ∆t

y,v

z,w

W(y)
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INITIAL VALUE PROBLEM AND TRANSIENT GROWTH OF DISTU RBANCE ENERGY (5) 
 

Essential quantitative results for the Poiseuille f low …  
 

The disturbance energy norm   ∫
−

θ++∂=ε
1

1

22
v

22

vyk2
1 dy}gkg{)t( 2  

We choose τ=t  and look for the IC { })y(),y(g MM
v θ  such that 1)0( =ε  and )(τε  is the largest. The 

maximal energy depends on  τ , i.e. )(M τε=ε . If Re < ReL then )(M τε  attains the maximum optε  at 

optτ=τ . The corresponding initial conditions are called the optimal disturbances . 

Left: the map of εopt as the function 
of δ and β for Re=1000. 
 
Right:  the energy of the 
disturbances evolving in time from 
the optimal IC, computed for 
different Reynolds numbers. The 
wave numbers are δ=0 and β=2.04 
(optimal for all values of Re). 
 

 
 

Scaling of the optimum with the Reynolds number:       
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INITIAL VALUE PROBLEM AND TRANSIENT GROWTH OF DISTU RBANCE ENERGY (6) 
 

Structure of the optimal disturbances in the Poiseu ille flow 

 
 

Left:  the spanwise structure of the velocity field at the time t=0 (top) and t=τopt=76 (bottom), computed 
for Re=1000, δ=0 and β=2.04. The corresponding energy growth factor is 196. 
 

Right:  The velocity profile of the “streamwise streak” at the time t=0 and t=τopt=76. The streamwise 
velocity is amplified about 600 times (!). All parameters like for the contour maps.  
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TRANSIENT ENERGY GROWTH IN THE WAVY CHANNEL (1) 
 

Formulation of the problem 
 
Finite dimensional approximation of the disturbance dynamics 
 

0zz =+ LM td
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+  the initial condition   0)0( zz = . 
 

The energy norm    ),t(),t(),t(),,t(),t( 00
H

000 zzEzzzzEzzz ≡=ε  ,  E – HPD matrix 

 
The ”most dangerous” disturbances can be found by s olving the following problem : 

 

Having a fixed time instant 0t >τ=  , find such vector M
0z  that  1),0( M

0 =ε z  (normalization) and 

),( M
0M zτε=ε  is the largest possible. By solving this problem for different values of τ  , we obtain the 

envelope function of the maximal energy growth (amplification) )(M τε=ε . 

 
Optimal initial disturbances  (only for Re < ReL): we maximize )(M τε  with respect to τ  and obtain 

OPT
0z , OPTτ   and OPTε . 
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TRANSIENT ENERGY GROWTH IN THE WAVY CHANNEL (2) 
 

Solution of the constrained optimization problem  
 

The solution of IVP can be written as    00 )iexp(),( zzz τ−=τ A .  
  

Assume (for simplicity) that A diagonalizable  1-1- VVAVVA )iexp()iexp( τ−=τ−⇒= ΣΣ , 

where })iexp(),..,iexp({diag)iexp(
GM1 τσ−τσ−=τ− Σ  and MG = dim A.  

 

Then  000 )iexp()iexp(),( sΣzΣzz τ−=τ−=τ VVV 1- ,  where  00 sz V= . 
 
The energy norm can be expressed in terms of the vector s0: 
 

000 )(~,),(~ sEss τ=τε ,  where )iexp()iexp()(~ H τ−τ=τ ∗
ΣEΣE VV  (HPD matrix). 

 

The normalization condition is 1)0(~,),0(~
000 ==ε sEss .  

 

The extended functional  ]1),0(~[),(~][ 000 −εµ−τε= sssJ . Stationary points of the functional J  are   

the eigenvectors of  the generalized HPD eigenvalue problem  00 )0(~)(~ sEsE µ=τ .  
 

Solution to the optimization problem is the eigenve ctor M
0s  with the largest eigenvalue   

)(),(~
M

M
0M τε≡τε=µ s  and  M

0
M
0 sz V= . 
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TRANSIENT ENERGY GROWTH IN THE WAVY CHANNEL (3) 
 

Numerical analysis of the transient energy growth 
 

General remarks: 
 
(1) Each eigenmode in the wavy channel can be treated as originating from a certain eigensolution of 
the referential Poiseuille flow with the wave vector ],0,m[],0,[ zxm βα+δ=κκ= ∗κ , m = -
MS,..,0,..,MS.Thus, in contrast to the Poiseuille flow we will now look for initial disturbances, which are 
built with many spanwise Fourier harmonics. 
 
(2) Theoretically (i.e. with MS approaching infinity) the ensemble of all eigenmodes is periodic with the 
Floquet number ∗δ , and the period is equal to the wave number α . Thus, it is actually sufficient to 

consider ∗δ  in the range ),0[ α  or  )2/,2/[ αα− . 
 
(3) Numerical calculations show that the largest transient growth is observed for the disturbances  
which are streamwise independent ( 0=β ), exactly like in the case of the Poiseuille flow.  
 
(4) If 0=δ=β ∗  then the simplified description of the disturbance dynamics must be slightly changed. 
In such case the 0-th Fourier modes of the vertical velocity and vorticity components are zero. Thus, 
they cannot be used to evaluate the 0-th Fourier modes of the streamwise and spanwise components 
of the velocity – the latter are included into governing equations as the explicit unknowns. Also, in 
order to obtain well-posed problem two additional constrains must be imposed on the disturbance field. 
Here we assume that the mean values of the streamwise and spanwise pressure gradients remain 
unchanged.  
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TRANSIENT ENERGY GROWTH IN THE WAVY CHANNEL (4) 
 
 
Optimal energy amplification as the function of the Floquet 
parameter ∗δ , computed for different values of the wall wave 
number α  (Re = 1000, S=0.1). Dashed line corresponds to the 
referential flow with the same Reynolds number and the spanwise 
wane number equal ∗δ=δ . 
 
  
  
  

  
  
 Optimal energy amplification as the function of the wall wave 
number α  computed for different amplitudes of the 
corrugation of the bottom (black lines) and both walls 
(symmetric case, gray lines). Reynolds number Re=1000, the 
Floquet parameter 0=δ∗ . The dot line shows the value of 
the optimal amplification obtained with the Floquet parameter 
adjusted in such a way that the Fourier mode with the 
spanwise wave number equal 2 is always present. 
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TRANSIENT ENERGY GROWTH IN THE WAVY CHANNEL (5) 
 
 
OEA as the function of the amplitude S 
computed for 1-sided (left) and 2-sided 
symmetric (right) wall corrugation with different 
geometric period. The Reynolds number  
Re=1000. The Floquet parameter ∗δ  is either 0 
(continuous lines) or 2 (dashed lines). 
 
 
 
 

 
Left:  the maximal energy amplification as the 
function of the time instant τ  computed for 
Re=1000, α=1, δ*=0 and different values of the 
amplitude S (2-sided symmetric wavy walls) 
 
Right:  time histories of the disturbance energy 
computed for the initial conditions 
corresponding to local maxima of the envelope 
function )(M τε=ε .  
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TRANSIENT ENERGY GROWTH IN THE WAVY CHANNEL (6) 
 
 

 
Demonstration of the universal scaling of the maximal energy growth envelope function )(M τε=ε  
with respect to the Reynolds number (essentially the same as for the Poiseuille flow) (2-sided 
symmetric wall corrugation with S=0.2, α=1 and δ*=0). 
 
 
 



 46 

TRANSIENT ENERGY GROWTH IN THE WAVY CHANNEL (7) 
 

Flow structures for the first maximum (lift-up effe ct) … 
 

 
Spanwise structure of the velocity field corresponding to the optimal initial disturbance in the wavy 
channel with S=0.1 and α=4, computed for Re=1000, δ*=2 and β=0. The spanwise period of the 
velocity field is 2 times larger that the wall period. Left: optimal initial condition (t=0). Right: the state 
obtained for the optimal time t≈75. The optimal amplification of disturbance energy is about 192. The 
streamwise component of the disturbance velocity is amplified about 600 times. 
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TRANSIENT ENERGY GROWTH IN THE WAVY CHANNEL (8) 
 

Flow structures for the first maximum (lift-up effe ct) continued …  
 

 
 
As above but this time the wall wave number is α=0.5 and the amplitude S=0.2. The energy 
amplification attains the optimal value of 408 at the time instant t ≈ 96. The streamwise velocity is 
amplified about 1000 times (!) 
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TRANSIENT ENERGY GROWTH IN THE WAVY CHANNEL (9) 
 

Flow structures for the second maximum …  

 
Spanwise structure of the disturbance velocity field corresponding to the second maximum, calculated 
for  S=0.15, α=1, Re=1000 and δ*=β=0.  
 
Left:  optimal initial condition (t=0). Note the lack of the streamwise vortices, very small vertical velocity 
component and dominating cross-flow with nonzero volumetric rate. 
 
Right:  the state obtained for the optimal time t≈292. The optimal amplification of disturbance energy is 
about 239. The strong streamwise streak structure emerges but quite different then before. The cross-
flow still exists but is slowly attenuated. The streamwise component of the disturbance velocity is 
amplified about 450 times. 
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TRANSIENT ENERGY GROWTH IN THE WAVY CHANNEL (10) 
 

Mechanism of the transient energy growth 

 
LEFT:  The lift-up mechanism : slowly attenuated spanwise-periodic array of streamwise-oriented 
vortices generate vertical disturbances which are transformed into the streamwise streaks with 
temporarily large amplitude. This mechanism of energy growth is common for all 2D parallel or nearly 
parallel flows (Poiseuille, Couette, Blasius, Falkner-Skan, etc.).  
 

RIGHT: The “push-aside” mechanism : the slowly attenuated cross-flow disturbances (with nonzero 
net flux) interact with the spanwise-modulated velocity of the basic flow and also generate streamwise 
streaks, however with different structure then in the case of the lift-up effect. 
 

From the mathematical viewpoint, the phenomenon of the transient growth appears due to 
strong nonorthogonality of a few least attenuated n ormal modes (the evolutionary linear 
operator is nonnormal). 

∼ gv(t,y) ∆t

∼ -DW(y) g v(t,y) ∆t

y,v

z,w

W(y)
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THE SUMMARY OF THE ANALYSIS OF THE TRANSIENT ENERGY GROWTH 
 

1. Large transient growth of the disturbance energy is possible providing that Fourier modes with the 
spanwise wave number equal or close to 2 are present in the disturbance field. Such situation is natural 
for the wall corrugation with the large period where “most active” Fourier modes will always appear as 
superhamonics.  

 

2. Two “modes” of the transient growth may appear: the short-time mode and long-time mode. The first one 
is driven by the lift-up mechanism and characteristic time of the extreme energy amplification is less that 
100. The long-time mode (appears for larger amplitudes S and α≈1) is driven by the push-aside effect, 
which is not present in the referential flow. The characteristic time scale of the push-aside effect is roughly 
3 times larger that for the lift-up effect. 

 

3. The transient velocity structures generated by lift-up and push-aside mechanism differ in the form of the 
streamwise streaks and in the character of the transversal motion. The lift-up effect is connected to the 
presence of the slowly decaying vortices occupying the whole volume of fluid (good for mixing!). However, 
in the flow structures generated by the push-aside effect the disturbed motion is predominantly horizontal 
(the vertical velocity is very small), thus mixing in such disturbance field may be less effective.      

 

4. The streamwise streaks are known to be very unstable structures – later development of secondary 
instabilities should occur and lead to even more complicated 3D velocity field with enhanced mixing 
properties. Interesting effects may also expected due to the secondary instability of the cross-flow in the 
disturbance velocity field generated by the push-aside effect. Much further research is required in this 
respect, including high-resolution DNS.  


