Effective interactions between colloidal particles at the surface of a liquid drop

Jan Guzowski

Instytut Chemii Fizycznej PAN, Warszawa

IPPT, Warszawa, 09.11.2011
Pickering Emulsions

- emulsion + colloidal particles
- particles get trapped at the surface of droplets

- applications: stabilization of emulsions, engineering of functional particles
Pickering Emulsions

- emulsion + colloidal particles
- particles get trapped at the surface of droplets

applications: stabilization of emulsions, engineering of functional particles
Pickering Emulsions

- emulsion + colloidal particles
- particles get trapped at the surface of droplets

applications: stabilization of emulsions, engineering of functional particles
Stability of a colloidal particle at the interface

- macroscopic picture: interplay of surface energies
- contributions from three possible interfaces: \(F = \gamma_{pl} S_{pl} + \gamma_{pg} S_{pg} + \gamma_{lg} S_{lg} \)
- rough estimate: undeformable flat interface \(\Rightarrow F(h) = \pi \gamma a^2 (h/a + \cos \theta_p)^2 \), where \(\cos \theta_p = (\gamma_{pg} - \gamma_{pl})/\gamma_{lg} \)

\[
\begin{array}{|c|c|}
\hline
a & \Delta F [k_B T] \\
\hline
10\text{nm} & 10^3 \\
100\text{nm} & 10^5 \\
1\mu m & 10^7 \\
\hline
\end{array}
\]
Stability of a colloidal particle at the interface

- macroscopic picture: interplay of surface energies
- contributions from three possible interfaces: \(F = \gamma_{pl} S_{pl} + \gamma_{pg} S_{pg} + \gamma_{lg} S_{lg} \)
- rough estimate: undeformable flat interface \(F(h) = \pi \gamma a^2 (h/a + \cos \theta_p)^2 \), where \(\cos \theta_p = (\gamma_{pg} - \gamma_{pl})/\gamma_{lg} \)

<table>
<thead>
<tr>
<th>(a)</th>
<th>(\Delta F) [(k_B T)]</th>
</tr>
</thead>
<tbody>
<tr>
<td>10nm</td>
<td>(10^3)</td>
</tr>
<tr>
<td>100nm</td>
<td>(10^5)</td>
</tr>
<tr>
<td>1(\mu)m</td>
<td>(10^7)</td>
</tr>
</tbody>
</table>
Stability of a colloidal particle at the interface

- macroscopic picture: interplay of surface energies
- contributions from three possible interfaces: \(F = \gamma_{pl}S_{pl} + \gamma_{pg}S_{pg} + \gamma_{lg}S_{lg} \)
- rough estimate: undeformable flat interface \(\Rightarrow F(h) = \pi \gamma a^2 (h/a + \cos \theta_p)^2 \)
 where \(\cos \theta_p = (\gamma_{pg} - \gamma_{pl})/\gamma_{lg} \)

<table>
<thead>
<tr>
<th>(a)</th>
<th>(\Delta F) [(k_B T)]</th>
</tr>
</thead>
<tbody>
<tr>
<td>10nm</td>
<td>(10^3)</td>
</tr>
<tr>
<td>100nm</td>
<td>(10^5)</td>
</tr>
<tr>
<td>1(\mu)m</td>
<td>(10^7)</td>
</tr>
</tbody>
</table>

\(h/a \)
Generic case: single particle at a flat interface

- particle pulled by the force \(f = \text{weight} - \text{buoyancy} \)
- interface effectively pinned by gravity at the distance \(\lambda = \sqrt{\gamma/\Delta \rho g} \) (capillary length)
Generic case: single particle at a flat interface

- particle pulled by the force $f = \text{weight} - \text{buoyancy}$
- interface effectively pinned by gravity at the distance $\lambda = \sqrt{\frac{\gamma}{\Delta \rho g}}$ (capillary length)

![Diagram showing a particle at a flat interface with angles θ_p, β, and λ.]
Generic case: single particle at a flat interface

- the capillary equation for $|\nabla_\parallel u| \ll 1$ (balance of capillary and hydrostatic pressures across the interface)

$$-\gamma \nabla_\parallel^2 u + \frac{\gamma}{\lambda^2} u = 0$$

- the corresponding Green’s function $G(x, x') = G(|x, x'|)$ obeying the condition $G(r \to \infty) = 0$ reads

$$G(r) = \frac{1}{2\pi} K_0(r/\lambda) \sim \begin{cases} \ln(\lambda/r) & \text{for } r \ll \lambda \\ r^{-1/2} e^{-r/\lambda} & \text{for } r \gg \lambda \end{cases}$$
Generic case: single particle at a flat interface

- the capillary equation for $|\nabla \parallel u| \ll 1$ (balance of capillary and hydrostatic pressures across the interface)

 $$ -\gamma \nabla^2 \parallel u + \frac{\gamma}{\lambda^2} u = 0 $$

- the corresponding Green’s function $G(x, x') = G(|x, x'|)$ obeying the condition $G(r \rightarrow \infty) = 0$ reads

 $$ G(r) = \frac{1}{2\pi}K_0(r/\lambda) \sim \begin{cases}
 \ln(\lambda/r) & \text{for } r \ll \lambda \\
 r^{-1/2}e^{-r/\lambda} & \text{for } r \gg \lambda
 \end{cases} $$
Effective description, limit $\lambda \to \infty$

- particle replaced by an effective pressure distribution $\Pi(x)$
- for $\lambda \to \infty$ Poisson equation $-\gamma \nabla^2 u = \Pi(x)$
- in terms of complex variables $u(x) = \text{Re}V(z)$ with $V(z) = (2\pi\gamma)^{-1} \int d^2x' \Pi(z') \ln[\lambda/(z-z')]$
- for $\Pi(z')$ localized around the origin one can use the Taylor expansion

$$2\pi\gamma V(z) = \tilde{Q}_0 \ln(\lambda/z) + \sum_{n=1}^{\infty} \tilde{Q}_n n^{-1} z^{-n}$$

- with the multipoles $\tilde{Q}_n := \int d^2x' \Pi(z') z'^n = Q_n e^{i\phi_n}$ so that $Q_0 = \text{total external force}, Q_1 = \text{total external torque}; Q_{n \geq 2}$ correspond to free particles
- residue theorem \Rightarrow all multipoles fully determined by the deformation around an arbitrary contour C enclosing the origin: $\tilde{Q}_n = i\gamma \oint_C dz z^n (dV/dz)$
particle replaced by an effective pressure distribution $\Pi(x)$

for $\lambda \to \infty$ Poisson equation $-\gamma \nabla^2 u = \Pi(x)$

in terms of complex variables $u(x) = \text{Re} V(z)$ with

$$V(z) = (2\pi\gamma)^{-1} \int d^2x' \ \Pi(z') \ln[\lambda/(z - z')]$$

for $\Pi(z')$ localized around the origin one can use the Taylor expansion

$$2\pi\gamma V(z) = \tilde{Q}_0 \ln(\lambda/z) + \sum_{n=1}^{\infty} \tilde{Q}_n n^{-1} z^{-n}$$

with the multipoles $\tilde{Q}_n := \int d^2x' \ \Pi(z') z'^n = Q_n e^{i\phi_n}$ so that $Q_0 = \text{total external force}$, $Q_1 = \text{total external torque}$; $Q_{n \geq 2}$ correspond to free particles

residue theorem \Rightarrow all multipoles fully determined by the deformation around an arbitrary contour C enclosing the origin: $\tilde{Q}_n = i\gamma \oint_C dz \ z^n (dV/dz)$
particle replaced by an effective pressure distribution $\Pi(x)$

for $\lambda \to \infty$ Poisson equation $-\gamma \nabla^2 u = \Pi(x)$

in terms of complex variables $u(x) = \text{Re} V(z)$ with

$V(z) = (2\pi\gamma)^{-1} \int d^2x' \Pi(z') \ln[\lambda/(z-z')]$

for $\Pi(z')$ localized around the origin one can use the Taylor expansion

$$2\pi\gamma V(z) = \tilde{Q}_0 \ln(\lambda/z) + \sum_{n=1}^{\infty} \tilde{Q}_n n^{-1} z^{-n}$$

with the multipoles $\tilde{Q}_n := \int d^2x' \Pi(z') z' \cdot n = Q_n e^{i\phi_n}$ so that $Q_0 = \text{total external force}$, $Q_1 = \text{total external torque}$; $Q_{n\geq 2}$ correspond to free particles

residue theorem \Rightarrow all multipoles fully determined by the deformation around an arbitrary contour C enclosing the origin: $\tilde{Q}_n = i\gamma \oint_C dz \, z^n (dV/dz)$
Effective description, limit $\lambda \to \infty$

- particle replaced by an effective pressure distribution $\Pi(x)$
- for $\lambda \to \infty$ Poisson equation $-\gamma \nabla^2 u = \Pi(x)$
- in terms of complex variables $u(x) = \text{Re} V(z)$ with
 $$V(z) = (2\pi\gamma)^{-1} \int d^2 x' \Pi(z') \ln[\lambda/(z - z')]$$
- for $\Pi(z')$ localized around the origin one can use the Taylor expansion
 $$2\pi\gamma V(z) = \tilde{Q}_0 \ln(\lambda/z) + \sum_{n=1}^{\infty} \tilde{Q}_n n^{-1} z^{-n}$$

 with the multipoles $\tilde{Q}_n := \int d^2 x' \Pi(z') z'^n = Q_n e^{i\phi_n}$ so that $Q_0 = \text{total external force}$, $Q_1 = \text{total external torque}$; $Q_{n \geq 2}$ correspond to free particles
- residue theorem \Rightarrow all multipoles fully determined by the deformation around an arbitrary contour C enclosing the origin: $\tilde{Q}_n = i\gamma \oint_C dz z^n (dV/dz)$
particle replaced by an effective pressure distribution $\Pi(x)$

for $\lambda \to \infty$ Poisson equation $-\gamma \nabla^2 u = \Pi(x)$

in terms of complex variables $u(x) = \text{Re} V(z)$ with

$$V(z) = (2\pi \gamma)^{-1} \int d^2 x' \, \Pi(z') \ln[\lambda/(z - z')]$$

for $\Pi(z')$ localized around the origin one can use the Taylor expansion

$$2\pi \gamma V(z) = \tilde{Q}_0 \ln(\lambda/z) + \sum_{n=1}^{\infty} \tilde{Q}_n n^{-1} z^{-n}$$

with the multipoles $\tilde{Q}_n := \int d^2 x' \, \Pi(z') z'^n = Q_n e^{i\phi_n}$ so that $Q_0 = \text{total external force}$, $Q_1 = \text{total external torque}$; $Q_{n \geq 2}$ correspond to free particles

residue theorem \Rightarrow all multipoles fully determined by the deformation around an arbitrary contour C enclosing the origin: $\tilde{Q}_n = i \gamma \oint_C dz \, z^n (dV/dz)$
Effective description, limit $\lambda \to \infty$

- particle replaced by an effective pressure distribution $\Pi(x)$
- for $\lambda \to \infty$ Poisson equation $-\gamma \nabla^2 u = \Pi(x)$
- in terms of complex variables $u(x) = \text{Re} V(z)$ with $V(z) = (2\pi \gamma)^{-1} \int d^2 x' \ \Pi(z') \ln[\lambda/(z - z')]$
- for $\Pi(z')$ localized around the origin one can use the Taylor expansion

$$2\pi \gamma V(z) = \tilde{Q}_0 \ln(\lambda/z) + \sum_{n=1}^{\infty} \tilde{Q}_n n^{-1} z^{-n}$$

with the multipoles $\tilde{Q}_n := \int d^2 x' \ \Pi(z') z'^n = Q_n e^{i\phi_n}$ so that $Q_0 =$ total external force, $Q_1 =$ total external torque; $Q_{n \geq 2}$ correspond to free particles

- residue theorem \Rightarrow all multipoles fully determined by the deformation around an arbitrary contour C enclosing the origin: $\tilde{Q}_n = i\gamma \oint_C dz z^n (dV/dz)$
Capillary interactions

- two particles at distance d, effective pressure $\Pi = \Pi_1 + \Pi_2$
- free energy
 \[F = \int d^2 x \left[\frac{\gamma}{2} (\nabla \parallel u)^2 - \Pi(x) u(x) \right] = -\frac{1}{2\gamma} \int d^2 x \int d^2 x' \Pi(x) G(x, x') \Pi(x') \]
- $F = F_{1,\text{self}} + F_{2,\text{self}} + \Delta F(d)$
- multipole expansion yields
 \[\Delta F(d) = -\frac{1}{\gamma} \sum_{n=0}^{\infty} \sum_{n'=0}^{\infty} Q_{1,n} Q_{2,n'} g_{nn'} \cos(n\varphi_{1n} + n'\varphi_{2n'}) \times \begin{cases} \ln(\lambda/d) & n = n' = 0, \\ d^{n-n'} & \text{otherwise} \end{cases} \]
- in general $Q_{i,n} = Q_{i,n}(d)$ (feedback $u \rightarrow \Pi$), many-body interactions!
- but Q_0 and Q_1 can be fixed by external forces and torques
two particles at distance d, effective pressure $\Pi = \Pi_1 + \Pi_2$

free energy

$$F = \int d^2x \left[\frac{\gamma}{2} (\nabla \parallel u)^2 - \Pi(x)u(x) \right] = -\frac{1}{2\gamma} \int d^2x \int d^2x' \Pi(x) G(x,x') \Pi(x')$$

$F = F_{1,\text{self}} + F_{2,\text{self}} + \Delta F(d)$

multipole expansion yields

$$\Delta F(d) = -\frac{1}{\gamma} \sum_{n=0}^{\infty} \sum_{n'=0}^{\infty} Q_{1,n} Q_{2,n'} g_{nn'} \cos(n\varphi_{1n} + n'\varphi_{2n'}) \times \begin{cases} \ln(\lambda/d) & n = n' = 0, \\ d^{-n-n'} & \text{otherwise} \end{cases}$$

in general $Q_{i,n} = Q_{i,n}(d)$ (feedback $u \rightarrow \Pi$), many-body interactions!

but Q_0 and Q_1 can be fixed by external forces and torques
Capillary interactions

- two particles at distance d, effective pressure $\Pi = \Pi_1 + \Pi_2$
- free energy
 \[
 F = \int d^2x \left[\frac{\gamma}{2} (\nabla \parallel u)^2 - \Pi(x) u(x) \right] = -\frac{1}{2\gamma} \int d^2x \int d^2x' \Pi(x) G(x, x') \Pi(x')
 \]
- $F = F_{1,\text{self}} + F_{2,\text{self}} + \Delta F(d)$
- multipole expansion yields
 \[
 \Delta F(d) = -\frac{1}{\gamma} \sum_{n=0}^{\infty} \sum_{n'=0}^{\infty} Q_{1,n} Q_{2,n'} g_{nn'} \cos(n\varphi_{1n} + n'\varphi_{2n'}) \times \begin{cases} \ln(\lambda/d) & n = n' = 0, \\ d^{-n-n'} & \text{otherwise} \end{cases}
 \]
- in general $Q_{i,n} = Q_{i,n}(d)$ (feedback $u \to \Pi$), many-body interactions!
- but Q_0 and Q_1 can be fixed by external forces and torques
two particles at distance \(d \), effective pressure \(\Pi = \Pi_1 + \Pi_2 \)

free energy

\[
F = \int d^2x \left[\frac{\gamma}{2} (\nabla \| u)^2 - \Pi(x) u(x) \right] = -\frac{1}{2\gamma} \int d^2x \int d^2x' \Pi(x) G(x, x') \Pi(x')
\]

\[
F = F_{1,\text{self}} + F_{2,\text{self}} + \Delta F(d)
\]

multipole expansion yields

\[
\Delta F(d) = -\frac{1}{\gamma} \sum_{n=0}^{\infty} \sum_{n'=0}^{\infty} Q_{1,n} Q_{2,n'} g_{nn'} \cos(n \varphi_{1n} + n' \varphi_{2n'}) \times \left\{ \begin{array}{ll} \ln(\lambda/d) & n = n' = 0, \\
\frac{1}{d^{n-n'}} & \text{otherwise}
\end{array} \right.
\]

in general \(Q_{i,n} = Q_{i,n}(d) \) (feedback \(u \to \Pi \)), many-body interactions!

but \(Q_0 \) and \(Q_1 \) can be fixed by external forces and torques
Capillary interactions

- two particles at distance \(d \), effective pressure \(\Pi = \Pi_1 + \Pi_2 \)
- free energy
 \[
 F = \int d^2x \left[\frac{\gamma}{2}(\nabla \parallel u)^2 - \Pi(x)u(x) \right] = -\frac{1}{2\gamma} \int d^2x \int d^2x' \Pi(x)G(x, x')\Pi(x')
 \]
- \(F = F_{1,\text{self}} + F_{2,\text{self}} + \Delta F(d) \)
- multipole expansion yields
 \[
 \Delta F(d) = -\frac{1}{\gamma} \sum_{n=0}^{\infty} \sum_{n'=0}^{\infty} Q_{1,n}Q_{2,n'}g_{nn'} \cos(n\varphi_{1n} + n'\varphi_{2n'}) \times \left\{ \begin{array}{ll}
 \ln(\lambda/d) & n = n' = 0, \\
 d^{-n-n'} & \text{otherwise}
 \end{array} \right.
 \]
- in general \(Q_{i,n} = Q_{i,n}(d) \) (feedback \(u \rightarrow \Pi \)), many-body interactions!
- but \(Q_0 \) and \(Q_1 \) can be fixed by external forces and torques
Capillary interactions

- two particles at distance d, effective pressure $\Pi = \Pi_1 + \Pi_2$
- free energy
 \[F = \int d^2 x \left[\frac{\gamma}{2} (\nabla \parallel u)^2 - \Pi(x) u(x) \right] = -\frac{1}{2\gamma} \int d^2 x \int d^2 x' \Pi(x) G(x, x') \Pi(x') \]
- $F = F_{1,\text{self}} + F_{2,\text{self}} + \Delta F(d)$
- multipole expansion yields
 \[\Delta F(d) = -\frac{1}{\gamma} \sum_{n=0}^{\infty} \sum_{n'=0}^{\infty} Q_{1,n} Q_{2,n'} g_{nn'} \cos(n \phi_1 + n' \phi_2) \times \left\{ \begin{array}{ll} \ln(\lambda/d) & n = n' = 0, \\ d^{-n-n'} & \text{otherwise} \end{array} \right. \]
- in general $Q_{i,n} = Q_{i,n}(d)$ (feedback $u \rightarrow \Pi$), many-body interactions!
- but Q_0 and Q_1 can be fixed by external forces and torques
Spherical interfaces

- Assume small radial deformations $v(\Omega) = (r(\Omega) - R_0)/R_0$ and incompressibility of liquid \Rightarrow free energy functional:

$$F[v(\Omega)] = \gamma R_0^2 \int_{\Omega_0} d\Omega \left[\frac{1}{2} (\nabla_a v)^2 - v^2 - (\pi(\Omega) + \mu) v \right] + O(v^3, (\nabla_a v)^3)$$

- with $\int d\Omega v(\Omega) = 0$; condition $\delta F = 0$ yields $-\nabla^2_a v - 2v = \pi(\Omega) + \mu$

- Free energy $F = \min_{\{v(\Omega)\}} F$ in terms of the corresponding Green's function G reads

$$F = -\frac{\gamma R_0^2}{2} \int d\Omega \int d\Omega' \; \pi(\Omega) G(\Omega, \Omega') \pi(\Omega')$$

- At small separations $G(\bar{\theta}) \xrightarrow{\bar{\theta} \to 0} - (2\pi)^{-1} \ln(\bar{\theta}) = -(2\pi)^{-1} \ln(r/R_0)$
Spherical interfaces

- assume small radial deformations $v(\Omega) = (r(\Omega) - R_0)/R_0$ and incompressibility of liquid \Rightarrow free energy functional:

$$
\mathcal{F}[\{v(\Omega)\}] = \gamma R_0^2 \int_{\Omega_0} d\Omega \left[\frac{1}{2} (\nabla_a v)^2 - v^2 - (\pi(\Omega) + \mu) v \right] + O(v^3, (\nabla_a v)^3)
$$

- with $\int d\Omega v(\Omega) = 0$; condition $\delta \mathcal{F} = 0$ yields $-\nabla^2_a v - 2v = \pi(\Omega) + \mu$
- free energy $F = \min_{\{v(\Omega)\}} \mathcal{F}$ in terms of the corresponding Green’s function G reads

$$
F = -\frac{\gamma R_0^2}{2} \int d\Omega \int d\Omega' \pi(\Omega) G(\Omega, \Omega') \pi(\Omega').
$$

- at small separations $G(\bar{\theta}) \xrightarrow{\bar{\theta} \to 0} -(2\pi)^{-1} \ln(\bar{\theta}) = -(2\pi)^{-1} \ln(r/R_0)$
Spherical interfaces

- assume small radial deformations \(\nu(\Omega) = (r(\Omega) - R_0)/R_0 \) and incompressibility of liquid \(\Rightarrow \) free energy functional:

\[
\mathcal{F}[\{\nu(\Omega)\}] = \gamma R_0^2 \int_{\Omega_0} d\Omega \left[\frac{1}{2} (\nabla_a \nu)^2 - \nu^2 - (\pi(\Omega) + \mu) \nu \right] + O(\nu^3, (\nabla_a \nu)^3)
\]

- with \(\int d\Omega \nu(\Omega) = 0 \); condition \(\delta \mathcal{F} \equiv 0 \) yields \(-\nabla_a^2 \nu - 2\nu = \pi(\Omega) + \mu\)

- free energy \(F = \min_{\{\nu(\Omega)\}} \mathcal{F} \) in terms of the corresponding Green’s function \(G \) reads

\[
F = -\frac{\gamma R_0^2}{2} \int d\Omega \int d\Omega' \pi(\Omega) G(\Omega, \Omega') \pi(\Omega').
\]

- at small separations \(G(\bar{\theta}) \xrightarrow{\bar{\theta} \to 0} -(2\pi)^{-1} \ln(\bar{\theta}) = -(2\pi)^{-1} \ln(r/R_0) \)
Spherical interfaces

- Assume small radial deformations $v(\Omega) = (r(\Omega) - R_0)/R_0$ and incompressibility of liquid \Rightarrow free energy functional:

$$F\{\{v(\Omega)\}\} = \gamma R_0^2 \int_{\Omega_0} d\Omega \left[\frac{1}{2} (\nabla_a v)^2 - v^2 - (\pi(\Omega) + \mu) v \right] + O(v^3, (\nabla_a v)^3)$$

- With $\int d\Omega v(\Omega) = 0$; condition $\delta F = 0$ yields $-\nabla_a^2 v - 2v = \pi(\Omega) + \mu$

- Free energy $F = \min_{\{v(\Omega)\}} F$ in terms of the corresponding Green’s function G reads

$$F = -\frac{\gamma R_0^2}{2} \int d\Omega \int d\Omega' \pi(\Omega) G(\Omega, \Omega') \pi(\Omega').$$

- At small separations $G(\bar{\theta}) \xrightarrow{\bar{\theta} \to 0} -(2\pi)^{-1} \ln(\bar{\theta}) = -(2\pi)^{-1} \ln(r/R_0)$
Spherical interfaces

- assume small radial deformations $v(\Omega) = (r(\Omega) - R_0)/R_0$ and incompressibility of liquid \Rightarrow free energy functional:

$$
\mathcal{F}\{\{v(\Omega)\}\} = \gamma R_0^2 \int_{\Omega_0} d\Omega \left[\frac{1}{2} (\nabla_a v)^2 - v^2 - (\pi(\Omega) + \mu) v \right] + O(v^3, (\nabla_a v)^3)
$$

- with $\int d\Omega v(\Omega) = 0$; condition $\delta \mathcal{F} = 0$ yields $-\nabla^2_a v - 2v = \pi(\Omega) + \mu$

- free energy $F = \min\{v(\Omega)\} \mathcal{F}$ in terms of the corresponding Green’s function G reads

$$
F = -\frac{\gamma R_0^2}{2} \int d\Omega \int d\Omega' \pi(\Omega) G(\Omega, \Omega') \pi(\Omega').
$$

- at small separations $G(\bar{\theta}) \xrightarrow{\bar{\theta} \to 0} -(2\pi)^{-1} \ln(\bar{\theta}) = -(2\pi)^{-1} \ln(r/R_0)$
Expansion in spherical harmonics

- **Capillary equation**
 \[l(l+1) - 2 \nu_{lm} = \pi_{lm} + \mu \delta_{l0} \text{ with} \]
 \[X_{lm} = \int d\Omega X(\Omega) Y_{lm}(\Omega) \]

- **\(l = 0 \): incompressibility** \(\nu_{00} = 0 \Rightarrow \mu = \pi_{00} \)

- **\(l = 1 \): translations** \(\nu_{1m} \) undefined, assume fixed center of mass \(\nu_{1m} = 0 \)

- **Free energy in terms of irreducible representation of rotation group**

 \[\Delta F = -\gamma R_0^2 \sum_{l \geq 2} \sum_{m=-l}^{l} \sum_{m'=-l}^{l} \pi_{1,lm} \pi_{2,lm'} \frac{(-1)^{m'}}{l(l+1)-1} d_{ll}^{l,m} (\bar{\theta}) e^{i(m\phi_1 + m'\phi_2)} \]
Expansion in spherical harmonics

- capillary equation
 \[l(l + 1) - 2 \nu_{lm} = \pi_{lm} + \mu \delta_{l0} \] with
 \[X_{lm} = \int d\Omega \ X(\Omega) Y_{lm}(\Omega) \]

- \(l = 0 \): incompressibility \(\nu_{00} = 0 \Rightarrow \mu = \pi_{00} \)

- \(l = 1 \): translations \(\nu_{1m} \) undefined, assume fixed center of mass \(\nu_{1m} = 0 \)

- free energy in terms of irreducible representation of rotation group

\[
\Delta F = -\gamma R_0^2 \sum_{l \geq 2} \sum_{m=-l}^{l} \sum_{m'=-l}^{l} \pi_{1,lm} \pi_{2,lm'} \frac{(-1)^{m'}}{l(l+1)-1} d_{m,-m'}^{l}(\bar{\theta}) e^{i(m\phi_1 + m'\phi_2)}
\]
Expansion in spherical harmonics

- Capillary equation

 \[\nu_{lm} = \pi_{lm} + \mu \delta_{l0} \quad \text{with} \quad X_{lm} = \int d\Omega \, X(\Omega) \, Y_{lm}(\Omega) \]

- \(l = 0 \): incompressibility \(\nu_{00} = 0 \Rightarrow \mu = \pi_{00} \)

- \(l = 1 \): translations \(\nu_{1m} \) undefined, assume fixed center of mass \(\nu_{1m} = 0 \)

- Free energy in terms of irreducible representation of rotation group

 \[
 \Delta F = -\gamma R_0^2 \sum_{l \geq 2} \sum_{m=-l}^{l} \sum_{m'=-l}^{l} \pi_{1,lm} \pi_{2,lm'} \frac{(-1)^{m'}}{l(l+1)-1} d_{m,-m'}(\bar{\theta}) e^{i(m\phi_1 + m'\phi_2)}
 \]
Expansion in spherical harmonics

- capillary equation
 \[[l(l + 1) - 2] \nu_{lm} = \pi_{lm} + \mu \delta_{l0} \quad \text{with} \]
 \[X_{lm} = \int d\Omega X(\Omega) Y_{lm}(\Omega) \]
- \(l = 0 \): incompressibility \(\nu_{00} = 0 \Rightarrow \mu = \pi_{00} \)
- \(l = 1 \): translations \(\nu_{1m} \) undefined, assume fixed center of mass \(\nu_{1m} = 0 \)

- free energy in terms of irreducible representation of rotation group

\[
\Delta F = -\gamma R_0^2 \sum_{l \geq 2} \sum_{m=-l}^{l} \sum_{m'=-l}^{l} \pi_{1,lm} \pi_{2,lm'} \frac{(-1)^{m'}}{l(l + 1) - 1} d_{m,-m'}(\bar{\theta}) e^{i(m\phi_1 + m'\phi_2)}
\]
in the limit $a, a' \ll R_0$ one has $\Delta F = \sum_{n, n'=0}^{\infty} \Delta F_{nn'}$ with $n = |m|$ and

\[
\Delta F_{nn'} = \gamma a^2 \frac{Q_{1,n} Q_{2,n'}}{(-2)^{n+n'+1} n! n'! \pi} \left(\frac{a}{R_0} \right)^{n+n'} \sum_{l \geq \max\{2, n, n'\}} \frac{(2l + 1)}{(l + 2)(l - 1)} \\
\times \left\{ \begin{array}{l}
\frac{(l + n')!}{(l - n)!} \left[(-1)^n \cos(n\phi_1 + n'\phi_2) \cos \left(\frac{\bar{\theta}}{2} \right)^{n'-n} \sin \left(\frac{\bar{\theta}}{2} \right)^{n'+n} P_{l-n'}^{(n'+n, n'-n)}(\cos \bar{\theta}) \\
+ \cos(n\phi_1 - n'\phi_2) \left(\cos \left(\frac{\bar{\theta}}{2} \right)^{n'+n} \sin \left(\frac{\bar{\theta}}{2} \right)^{n'-n} P_{l-n'}^{(n'-n, n'+n)}(\cos \bar{\theta}) \right) \right], \quad n > 0, \quad n' > 0, \\
(-1)^n \cos(n\phi_1) P_l^n(\cos \bar{\theta}), \quad n > 0, \quad n' = 0, \\
2^{-1} P_l(\cos \bar{\theta}), \quad n = 0, \quad n' = 0,
\end{array} \right.
\]

$Q_{i,n}$ are capillary multipoles on the locally flat interface, i.e., defined on the plane tangent to the unit sphere at Ω_i.

R_0 sets both the spatial separation and the capillary length.

more complex dependence on orientations
in the limit \(a, a' \ll R_0\) one has \(\Delta F = \sum_{n,n'=0}^{\infty} \Delta F_{nn'}\) with \(n = |m|\) and

\[
\Delta F_{nn'} = \gamma a^2 \frac{Q_{1,n} Q_{2,n'}}{(-2)^{n+n'+1} n! n'! \pi} \left(\frac{a}{R_0}\right)^{n+n'} \sum_{l \geq \max\{2,n,n'\}} \frac{(2l + 1)}{(l + 2)(l - 1)}
\]

\[
\times \left\{ \begin{array}{ll}
(l + n')! \left[(-1)^n \cos(n\phi_1 + n'\phi_2) \left(\cos\frac{\bar{\theta}}{2}\right)^{n'-n} \left(\sin\frac{\bar{\theta}}{2}\right)^{n'+n} P_{l-n'}^{(n'+n',n'-n)}(\cos\bar{\theta}) \\
+n \cos(n\phi_1 - n'\phi_2) \left(\cos\frac{\bar{\theta}}{2}\right)^{n'+n} \left(\sin\frac{\bar{\theta}}{2}\right)^{n'-n} P_{l-n'}^{(n'-n,n'+n)}(\cos\bar{\theta}) \\
(-1)^n \cos(n\phi_1) P_l^n(\cos\bar{\theta}), \\
2^{-1} P_l(\cos\bar{\theta}) \end{array} \right],
\end{array}
\]

\(Q_{i,n}\) are capillary multipoles on the locally flat interface, i.e., defined on the plane tangent to the unit sphere at \(\Omega_i\).

\(R_0\) sets both the spatial separation and the capillary length.

more complex dependence on orientations
Limit of small particles

- in the limit \(a, a' \ll R_0 \) one has \(\Delta F = \sum_{n,n'=0}^{\infty} \Delta F_{nn'} \) with \(n = |m| \) and

\[
\Delta F_{nn'} = \gamma a^2 \frac{Q_{1,n} Q_{2,n'}}{(-2)^{n+n'+1} n! n'! \pi} \left(\frac{a}{R_0} \right)^{n+n'} \sum_{l \geq \max\{2,n,n'\}} \frac{(2l+1)}{(l+2)(l-1)} \]

\[
\times \begin{cases}
\frac{(l+n')!}{(l-n)!} \left[(-1)^n \cos(n\phi_1 + n'\phi_2) \left(\cos \frac{\bar{\theta}}{2} \right)^{n'-n} \left(\sin \frac{\bar{\theta}}{2} \right)^{n'+n} P_{l-n'}^{(n'+n,n'-n)}(\cos \bar{\theta})
\right. \\
\left. + \cos(n\phi_1 - n'\phi_2) \left(\cos \frac{\bar{\theta}}{2} \right)^{n'+n} \left(\sin \frac{\bar{\theta}}{2} \right)^{n'-n} P_{l-n'}^{(n'-n,n'+n)}(\cos \bar{\theta}) \right]
\end{cases} , \quad n > 0, \quad n' > 0,
\]

\[
(\frac{-1)^n}{2} \cos(n\phi_1) P_l^n(\cos \bar{\theta}), \quad 2^{-1} P_l(\cos \bar{\theta}),
\]

- \(Q_{i,n} \) are capillary multipoles on the locally flat interface, i.e., defined on the plane tangent to the unit sphere at \(\Omega_i \)

- \(R_0 \) sets both the spatial separation and the capillary length

- more complex dependence on orientations
in the limit \(a, a' \ll R_0 \) one has \(\Delta F = \sum_{n,n'=0}^{\infty} \Delta F_{nn'} \) with \(n = |m| \) and

\[
\Delta F_{nn'} = \gamma a^2 \frac{Q_{1,n} Q_{2,n'}}{(-2)^{n+n'+1} n! n'! \pi} \left(\frac{a}{R_0} \right)^{n+n'} \sum_{l \geq \max\{2,n,n'\}} \frac{(2l + 1)}{(l + 2)(l - 1)} \left[\begin{array}{c} (l + n')! \\
(l - n)! \end{array} \right] \\
(\begin{array}{c} (l + n')! \\
(l - n)! \end{array} \right) \left[\begin{array}{c} (-1)^n \cos(n \phi_1 + n' \phi_2) \left(\cos \frac{\bar{\theta}}{2} \right)^{n'+n} \left(\sin \frac{\bar{\theta}}{2} \right)^{n'+n} P_{l-n'}^{(n'+n,n'-n)}(\cos \bar{\theta}) \\
+ \cos(n \phi_1 - n' \phi_2) \left(\cos \frac{\bar{\theta}}{2} \right)^{n'+n} \left(\sin \frac{\bar{\theta}}{2} \right)^{n'+n} P_{l-n'}^{(n'-n,n'+n)}(\cos \bar{\theta}) \\
(\begin{array}{c} (-1)^n \cos(n \phi_1) P_l^n(\cos \bar{\theta}) \\
2^{-1} P_l(\cos \bar{\theta}) \end{array} \right), \end{array} \right], \quad n > 0, \quad n' > 0,
\]

\(Q_{i,n} \) are capillary multipoles on the locally flat interface, i.e., defined on the plane tangent to the unit sphere at \(\Omega_i \).

\(R_0 \) sets both the spatial separation and the capillary length

more complex dependence on orientations
in the limit \(a, a' \ll R_0 \) one has \(\Delta F = \sum_{n,n'=0}^{\infty} \Delta F_{nn'} \) with \(n = |m| \) and

\[
\Delta F_{nn'} = \gamma a^2 \frac{Q_{1,n}Q_{2,n'}}{(-2)^{n+n'+1}n!n'!\pi} \left(\frac{a}{R_0} \right)^{n+n'} \sum_{l \geq \max\{2,n,n'\}} \frac{(2l + 1)}{(l + 2)(l - 1)}
\]

\[
\times \left\{ \begin{array}{l}
\frac{(l + n')!(l - n)!}{(l - n)!} \left[(-1)^n \cos(n\phi_1 + n'\phi_2) \left(\cos \frac{\bar{\theta}}{2} \right)^{n'+n} \left(\sin \frac{\bar{\theta}}{2} \right)^{n'+n} P_{l-n'}^{(n'+n,n'-n)}(\cos \bar{\theta}) \\
+ \cos(n\phi_1 - n'\phi_2) \left(\cos \frac{\bar{\theta}}{2} \right)^{n'+n} \left(\sin \frac{\bar{\theta}}{2} \right)^{n'-n} P_{l-n'}^{(n'-n,n'+n)}(\cos \bar{\theta}) \right], \quad n > 0, \quad n' > 0, \\
(-1)^n \cos(n\phi_1) P^n_l(\cos \bar{\theta}), \quad n > 0, \quad n' = 0, \\
2^{-1} P^n_l(\cos \bar{\theta}), \quad n = 0, \quad n' = 0,
\end{array} \right.
\]

\(Q_{i,n} \) are capillary multipoles on the locally flat interface, i.e., defined on the plane tangent to the unit sphere at \(\Omega_i \)

\(R_0 \) sets both the spatial separation and the capillary length

more complex dependence on orientations
Numerical calculations

- surface free energy minimized by using software Surface Evolver based on the gradient descent method

- minimized expression:

\[
\mathcal{F}[\{r(\Omega)\}, h_i, \psi_i; \bar{\theta}, \phi_i, f_i, T_i, \theta_{p,i}, a_i, V_i, \lambda_0] = \\
= \gamma S_{lg} + \sum_{i=1,2} (-\gamma \cos \theta_{p,i} S_{pl,i} - f_i h_i - T_i \cdot \psi_i) - \lambda_0 (V - V_i).
\]
Numerical calculations

- surface free energy minimized by using software Surface Evolver based on the gradient descent method
- minimized expression:

\[
\mathcal{F}[\{\mathbf{r}(\Omega)\}, h_i, \psi_i; \bar{\theta}, \phi_i, f_i, T_i, \theta_{p,i}, a_i, V_i, \lambda_0] = \\
= \gamma S_{lg} + \sum_{i=1,2} (-\gamma \cos \theta_{p,i} S_{pl,i} - f_i h_i - T_i \cdot \psi_i) - \lambda_0 (V - V_i).
\]
Results: monopoles

- smooth spherical particles, external radial forces $f = \gamma a Q_0$, fixed CM

\[
\frac{\Delta F_{00}(\bar{\theta})}{\gamma a^2} = -Q_0^2 G(\bar{\theta}) = \frac{Q_0^2}{4\pi} \left[\frac{1}{2} + \frac{4}{3} \cos \bar{\theta} + 2 \cos \bar{\theta} \ln \left(\sin \frac{\bar{\theta}}{2} \right) \right]
\]
Results: monopoles

- smooth spherical particles, external radial forces $f = \gamma a Q_0$, fixed CM

\[
\frac{\Delta F_{00}(\bar{\theta})}{\gamma a^2} = -Q_0^2 G(\bar{\theta}) = \frac{Q_0^2}{4\pi} \left[\frac{1}{2} + \frac{4}{3} \cos \bar{\theta} + 2 \cos \bar{\theta} \ln \left(\sin \frac{\bar{\theta}}{2} \right) \right]
\]

\[
\Delta F_{00}/(\gamma a^2 Q_0^2)
\]

- $R_0/a = 4$
- $R_0/a = 6$
- $R_0/a = 8$
Results: dipoles

- three metastable branches for three different orientational configurations

\[
\Delta F_{11}(\bar{\theta}, \phi_1, \phi_2) = \gamma a^2 \frac{Q_1^2}{8\pi} \left(\frac{a}{R_0} \right)^2 \begin{cases}
- f_+ (\bar{\theta}) + f_- (\bar{\theta}), & \text{for } \bar{\theta} < \bar{\theta}_0, \quad \uparrow \uparrow \\
- f_+ (\bar{\theta}) - f_- (\bar{\theta}), & \text{for } \bar{\theta}_0 < \bar{\theta} < \bar{\theta}_1, \quad \leftrightarrow \\
f_+ (\bar{\theta}) - f_- (\bar{\theta}), & \text{for } \bar{\theta} > \bar{\theta}_1, \quad \uparrow \downarrow
\end{cases}
\]

- where \(f_- (\bar{\theta}_0) = 0 \) and \(f_+ (\bar{\theta}_1) = 0 \) and

\[
f_+ (\theta) := \frac{1}{\sin^2(\theta/2)} - 4 \sin^2 \frac{\theta}{2} \ln \left(\sin \frac{\theta}{2} \right) - \frac{20}{3} \sin^2 \frac{\theta}{2} + 2,
\]

\[
f_- (\theta) := 4 \left(\cos \frac{\theta}{2} \right)^2 \ln \left(\sin \frac{\theta}{2} \right) + \frac{20}{3} \cos^2 \frac{\theta}{2}
\]
Results: dipoles

- three metastable branches for three different orientational configurations

\[
\Delta F_{11}(\bar{\theta}, \phi_1, \phi_2) = \gamma a^2 \frac{Q_1^2}{8\pi} \left(\frac{a}{R_0} \right)^2 \begin{cases}
-f_+(\bar{\theta}) + f_-(\bar{\theta}), & \text{for } \bar{\theta} < \bar{\theta}_0, \quad \uparrow \uparrow \\
-f_+(\bar{\theta}) - f_-(\bar{\theta}), & \text{for } \bar{\theta}_0 < \bar{\theta} < \bar{\theta}_1, \quad \leftrightarrow \\
f_+(\bar{\theta}) - f_-(\bar{\theta}), & \text{for } \bar{\theta} > \bar{\theta}_1, \quad \uparrow \downarrow
\end{cases}
\]

- where \(f_-(\bar{\theta}_0) = 0 \) and \(f_+(\bar{\theta}_1) = 0 \) and

\[
f_+(\theta) := \frac{1}{\sin^2(\theta/2)} - 4 \sin^2 \frac{\theta}{2} \ln \left(\sin \frac{\theta}{2} \right) - \frac{20}{3} \sin^2 \frac{\theta}{2} + 2,
\]

\[
f_-(\theta) := 4 \left(\cos \frac{\theta}{2} \right)^2 \ln \left(\sin \frac{\theta}{2} \right) + \frac{20}{3} \cos^2 \frac{\theta}{2}
\]
Results: dipoles

• pinned contact lines, external torques \(T = \gamma a^2 Q_1 \), fixed CM
Results: free spheroidal particles

- free, smooth prolate spheroids; approximation:
 \[Q_2 = Q_2(R_0) \simeq 2\pi \Delta r|_{\theta=a/R_0/a} \]

\[\Delta F_{22}(\bar{\theta}, \phi_1, \phi_2) = -\gamma a^2 \frac{3Q_2^2}{64\pi} \left(\frac{a}{R_0} \right)^4 \frac{1}{\sin^4(\bar{\theta}/2)}. \]
Results: free spheroidal particles

- free, smooth prolate spheroids; approximation:
 \[Q_2 = Q_2(R_0) \approx 2\pi \Delta r|_{\theta=a/R_0/a} \]

\[
\Delta F_{22}(\bar{\theta}, \phi_1, \phi_2) = -\gamma a^2 \frac{3Q_2^2}{64\pi} \left(\frac{a}{R_0} \right)^4 \frac{1}{\sin^4(\bar{\theta}/2)}.
\]
free energy depends on the contact angle θ_0 and boundary conditions of either a free ($\sigma = A$) or a pinned ($\sigma = B$) contact line at the substrate.
Sessile drops: free energy

- after subtracting self-energies $F_{i,\text{self}}$ one gets

$$\Delta F^{(N)}_\sigma := F^{(N)}_\sigma(\Omega_1, \ldots, \Omega_N, \theta_0) - \sum_{i=1}^{N} F_{i,\text{self}} =$$

$$= \sum_{i=1}^{N} \Delta F^{(1)}_\sigma(\theta_i, \theta_0) + \sum_{i<j} V_\sigma(\Omega_i, \Omega_j, \theta_0)$$

- substrate potential $\Delta F^{(1)}_\sigma$ and pair-potential V_σ:

$$\Delta F^{(1)}_\sigma = -\frac{f_i^2}{2\gamma} [G_{\sigma,\text{reg}}(\Omega_i, \Omega_i) - G_{\sigma,\text{reg}}(0, 0)]$$

$$V_\sigma = -\frac{f_i f_j}{2\gamma} [G_\sigma(\Omega_i, \Omega_j) + G_\sigma(\Omega_j, \Omega_i)]$$
Sessile drops: free energy

- after subtracting self-energies $F_{i,\text{self}}$ one gets

$$
\Delta F^{(N)} \sigma := \left[F^{(N)}_\sigma (\Omega_1, \ldots, \Omega_N, \theta_0) - \sum_{i=1}^{N} F_{i,\text{self}} \right] = \\
\sum_{i=1}^{N} \Delta F^{(1)}_{\sigma} (\theta_i, \theta_0) + \sum_{i<j} V_\sigma (\Omega_i, \Omega_j, \theta_0)
$$

- substrate potential $\Delta F^{(1)}_{\sigma}$ and pair-potential V_σ:

$$
\Delta F^{(1)}_{\sigma} = - \frac{f_i^2}{2\gamma} [G_{\sigma,\text{reg}} (\Omega_i, \Omega_i) - G_{\sigma,\text{reg}} (0, 0)] \\
V_\sigma = - \frac{f_i f_j}{2\gamma} [G_\sigma (\Omega_i, \Omega_j) + G_\sigma (\Omega_j, \Omega_i)],
$$
for $\Omega \in \Omega_0$ Green’s functions G_σ satisfy

$$-(\nabla^2 + 2)G_\sigma(\Omega, \Omega', \theta_0) = \delta(\Omega, \Omega') + \Delta_\sigma(\Omega, \Omega', \theta_0)$$

functions $\Delta_\sigma(\Omega, \Omega', \theta_0)$ corresponding to μ and π_{CM} determined from the force balance and incompressibility condition $\int_{\Omega_0} d\Omega \ G_\sigma(\Omega, \Omega') = 0$

with boundary conditions:

$$((\sin \theta_0 \partial_\theta G_A(\Omega, \Omega') - \cos \theta_0 G_A(\Omega, \Omega'))|_{\Omega \in \partial \Omega_0} = 0, \ G_B(\Omega, \Omega')|_{\Omega \in \partial \Omega_0} = 0.$$
for \(\Omega \in \Omega_0 \) Green’s functions \(G_\sigma \) satisfy

\[-(\nabla_a^2 + 2)G_\sigma(\Omega, \Omega', \theta_0) = \delta(\Omega, \Omega') + \Delta_\sigma(\Omega, \Omega', \theta_0)\]

functions \(\Delta_\sigma(\Omega, \Omega', \theta_0) \) corresponding to \(\mu \) and \(\pi_{CM} \) determined from the force balance and incompressibility condition \(\int_{\Omega_0} d\Omega \ G_\sigma(\Omega, \Omega') = 0 \)

with boundary conditions:

\[
(sin \theta_0 \partial_\theta G_A(\Omega, \Omega') - \cos \theta_0 G_A(\Omega, \Omega'))|_{\Omega \in \partial \Omega_0} = 0, \\
G_B(\Omega, \Omega')|_{\Omega \in \partial \Omega_0} = 0.
\]
Sessile drops: Green’s functions

- for $\Omega \in \Omega_0$ Green’s functions G_σ satisfy
 \[-(\nabla^2 + 2)G_\sigma(\Omega, \Omega', \theta_0) = \delta(\Omega, \Omega') + \Delta_\sigma(\Omega, \Omega', \theta_0) \]

- functions $\Delta_\sigma(\Omega, \Omega', \theta_0)$ corresponding to μ and π_{CM} determined from the force balance and incompressibility condition $\int_{\Omega_0} d\Omega \ G_\sigma(\Omega, \Omega') = 0$

- with boundary conditions:
 \[
 (\sin \theta_0 \partial_\theta G_A(\Omega, \Omega') - \cos \theta_0 G_A(\Omega, \Omega'))|_{\Omega \in \partial \Omega_0} = 0, \\
 G_B(\Omega, \Omega')|_{\Omega \in \partial \Omega_0} = 0.
 \]
Sessile drops: special case $\theta_0 = \pi/2$

- f images

Free c.l.

Pinned c.l.
Sessile drops: special case $\theta_0 = \pi/2$

$$\gamma \Delta F^{(2)}_A / (f_1 f_2) =$$

(a) \hspace{1cm} (b) \hspace{1cm} (c) \hspace{1cm} (d)

(e) \hspace{1cm} (f) \hspace{1cm} (g) \hspace{1cm} (h)
Sessile drops: special case $\theta_0 = \pi/2$

$$\gamma \Delta F_B^{(2)}/(f_1 f_2) =$$
interactions between **monopoles** and **dipoles** on spherical interface are non-monotonic and much different than on a flat interface

interactions between **spheroids** are quite similar

importance of **curvature** only in case of external fields

the effects of **boundary conditions** on the substrate for monopoles are long-ranged and independent of R_0

the effective **confining potential** depends qualitatively on the boundary conditions

THANK YOU!
interactions between monopoles and dipoles on spherical interface are non-monotonic and much different than on a flat interface

interactions between spheroids are quite similar

importance of curvature only in case of external fields

the effects of boundary conditions on the substrate for monopoles are long-ranged and independent of \(R_0 \)

the effective confining potential depends qualitatively on the boundary conditions

THANK YOU!
interactions between monopoles and dipoles on spherical interface are non-monotonic and much different than on a flat interface
interactions between spheroids are quite similar
importance of curvature only in case of external fields
the effects of boundary conditions on the substrate for monopoles are long-ranged and independent of R_0
the effective confining potential depends qualitatively on the boundary conditions
THANK YOU!
interactions between monopoles and dipoles on spherical interface are non-monotonic and much different than on a flat interface

interactions between spheroids are quite similar

importance of curvature only in case of external fields

the effects of boundary conditions on the substrate for monopoles are long-ranged and independent of R_0

the effective confining potential depends qualitatively on the boundary conditions

THANK YOU!
interactions between monopoles and dipoles on spherical interface are non-monotonic and much different than on a flat interface.

interactions between spheroids are quite similar.

importance of curvature only in case of external fields.

the effects of boundary conditions on the substrate for monopoles are long-ranged and independent of R_0.

the effective confining potential depends qualitatively on the boundary conditions.

THANK YOU!
interactions between monopoles and dipoles on spherical interface are non-monotonic and much different than on a flat interface

interactions between spheroids are quite similar

importance of curvature only in case of external fields

the effects of boundary conditions on the substrate for monopoles are long-ranged and independent of R_0

the effective confining potential depends qualitatively on the boundary conditions

THANK YOU!