The Use of Electrospinning for Preparation of Biodegradable Polyester Nanofibres Combined with Bioglass® for Tissue Engineering

T. Kowalczyk (Sp), T.A. Kowalewski, S. Blonski
Polish Academy of Sciences, Warsaw (Poland), Department of Mechanics and Physics of Fluids, Institute of Fundamental Technological Research
S.K. Misra, O. Bretcanu, D. Mohamad Yunos, A.R. Boccaccini
Department of Materials, Imperial College London (UK)

Introduction

- Modification of bioactive surfaces (Bioglass®) for tissue engineering applications was investigated
- Sintered Bioglass® based glass-ceramic pellets were deposited on nanofibres of biodegradable materials to promote osteoblast cells adhesion and proliferation
- Polymer coated bioactive glass surfaces were further investigated in simulated body fluid (SBF) to assess their acellular bioactive behaviour
- Bioactive glass-ceramic pellets were fabricated using the same processing parameters optimised for fabrication of 3D scaffolds by the foam replica technique (Chen et al., 2006)
- Fibre meshes were prepared from poly(epsilon-caprolactone), PCL, poly(3-hydroxybutyrate), P(3HB) and copolymer poly(3-hydroxybutyrate-co-hydroxyvalerate), PHBV, with the use of electrospinning method
- Electrospinning process was optimised to obtain materials of desired properties
- Electrospinning was observed by ultra-fast camera
- Materials were characterised by means of optical and Scanning Electron Microscopy (SEM)

ELECTROSPINNING OUTLINE

- Electrospinning is a modern and effective method of producing nanofibres
- The fibre is pulled out due to the electrostatic force between pipette and collector
- The fibre is created from a pendant droplet at the tip of the pipette when the electrostatic force overcomes surface tension
- The jet extends in a straight line for a certain distance and then bends and follows a looping and spiralling path
- In this process electrical forces elongate the jet thousands or even millions of times
- As a result 0.0003mm nanofibres are produced from polymer jets of 0.5mm in diameter

BASIC SETUP

Basic equipment
- Syringe pump with polymer solution supply
- High voltage power supply (up to 30kV)
- Collector – Bioglass® pellets on thin glass substrate. Grounded copper mesh
- High speed camera (up to 40720 fps)
- Epi-fluorescence microscope
- SEM microscope

RESULTS

Conclusions

- Nanofibres with limited amount of defects were obtained from P(3HB) and PHBV and composite material PCL/PEO
- Nanofibres were deposited on Bioglass® based glass-ceramic pellets
- Nanofibres made of P(3HB) have completely hydrolysed after 14 days immersion in SBF, while that of P(3HB) hydrolysed before 7 days
- All nanofibers covered Bioglass® samples were highly bioactive and promoted hydroxyapatite crystals growth in SBF
- The ordered formation of hydroxyapatite crystals on nanofibers should enhance osteoblast cells attachment and proliferation

References, Acknowledgements

- Chen, Q. Z., Thompson, I. D., Boccaccini, A. R., 45SS Bioglass®-derived glass-ceramic scaffolds for bone tissue engineering, Biomaterials 27 (2006) 2414-2425
- Anand et al., Osteoblastic cells grown on PLLA fibres, Biomaterials 27, 2006, 596 – 606
- Kenawy et al, Electrospinning of poly(ethylene-co-vinyl alcohol) copolymer and its use for tissue cell culturing and wound dressing, Biomaterials 24 (2003) 907–913
- The research was partially founded by grant N508 031 31/1740
- The Authors wish to acknowledge the help of dr Aleksandra Nowicka and prof. Danek Elbaum, members of Biophysics Group, Institute of Physics, PAS

http://fluid.ippt.gov.pl/nanofibres