
T. A. Kowalewski

S. Błoński

S. Barral

Department of Mechanics and Physics of Fluids

Experiments and Modelling of 

Electrospinning Process



NANOFIBRES,  CDMM2005, Warsaw, Poland

Nanofibres background

1. Nanofibres properties

 Increase of the surface to volume ratio -> solar and light sails and 

mirrors in space

 Reduction of characteristic dimension -> nano-biotechnology, 

tissue engineering, chemical catalysts, electronic devices 

 Bio-active fibres: catalysis of tissue cells growth

 Mechanical properties improvement -> new materials and 

composite materials by alignment in arrays and ropes 

2. Nanofibres production:

 Air-blast atomisation

 Pulling from melts

 Electrospinning of polymer solutions
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Classical liquid jet

Orifice – 0.1mm

Primary jet diameter ~ 0.2mm

 0.1mm 

Micro-jet diameter ~ 0.005mm

•Gravitational, mechanical or 

electrostatic pulling limited to

l/d ~ 1000 by capillary instability

•To reach nano-range: 

jet thinning ~10-3

draw ratio   ~106 !
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Electro-spinning

E ~ 105V/m

v=0.1m/s

moving charges e

bending force on charge e

viscoelastic and 

surface tension 

resistance

Moving charges (ions) interacting with electrostatic field amplify bending instability,

surface tension and viscoelasticity counteract these forces
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Electro-spinning

E ~ 105V/m

Bending instability enormously increases path of the jet, allowing to solve problem: how to

decrease jet diameter 1000 times or more without increasing distance to tenths of kilometres

bending instability of electro-spun jet 

charges moving along spiralling path 
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Electro-spinning
Simple model for elongating viscoelastic thread 

Non-dimensional length of the thread

as a function of electrostatic potential

Stress balance:  - viscosity, G – elastic modulus stress, 

 stress tensor, dl/dt – thread elongation                  

Momentum balance: Vo – voltage, e –

charge, a – thread radius, h- distance pipette-

collector  

Kinematic condition for thread velocity v
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~ 105 Volt/m

liquid jet

Nanofibres – basic setup
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Nanofibres – howto?

1. Viscoelastic fluid:

 Dilute solution (4 – 6)% of polyethylene oxide (molar weight 4.105

g/mol),  in 40% ethanol –water solvent

2. Electrostatic field

 high voltage power supply (5-30kV)

 plastic syringe

 metal grid to collect fibres

3. Visualization

 high speed camera (4000 – 40000 fps)

 high resolution „PIV” camera (1280x1024pixels) 

 CW Argon laser, double pulse Nd:Yag laser, projection lens 
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Nanofibres – basic setup
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Nanofibres collection
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Nanofibres collection
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Electrospinning observed  at 30fps

5 cm

Average 

velocity of the 

fibres: 2 m/s
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Electrospinning observed  at 4500fps

0.0 ms 8.9 ms 17.8 ms 26.7 ms 35.6 ms

44.4 ms 53.3 ms 62.2 ms 71.1 ms 80.0 ms
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Electrospinning observed  at 4500fps

5 cm

Average 

velocity of the 

fibre: 2 m/s
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Electron microscopy

PEO nanofibres
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Parametric study

Model validation varying following parameters:

 L  – length of the rectilinear part

  – angle of the envelope cone (image analysis)

 U – velocity of the fibre by PIV method

 a  – fibre diameter (image analysis)

 structure of collected woven (failure modes)

 elongation strength of single fibre measured by air jet 

Effect of 

 Electrostatic potential V

 Distance pipette-collector H

 Solution concentration c

 Distance from the pipette x

L

 H



NANOFIBRES,  CDMM2005, Warsaw, Poland

Parametric study

image 1
image 2 

t + t
PIV

cross – correlation

t = 500 s

Average 

velocity of the 

fibres: 2 m/s

• concentration of PEO: 3%

• Voltage: 8 kV

• H = 215 mm

• polymer solution with the 

addition of fluorescent particles

(0.3m polymer microspheres)

• light source: Nd:Yag laser
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Tested polymers

Test Polymer Solvent
Concen

tration

Voltage 

[kV]
Electrospinning

I

PEO

poly(ethylene 

oxide)

40% water 

60%  ethanol 

mixture

3 – 4 % 3 – 12

good and stable 

process for voltage up 

to 10kV

II
DBC

dibutyrylo chitin
ethanol 9 % 6 – 16 fairly good

III

TAC

cellulose 

triacetate

methylo 

chloride

20 % 3 – 30 polymer too viscous

7 % 10 – 30 difficult

IV
PAN

polyacrylonitrile

dimethyl-

formamide 

(DMF)

15 % 5 – 25 very good

V Glycerol water 88 % 20 – 30

difficult, lack of 

solidification cause 

that  the liquid  jet is  

separated into small 

droplets (electrospray) 
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Parametric study

 L (t) – instability of length of the rectilinear part

L

 H

• Polymer: PEO

• Concentration: c=3%

• Solvent: 40% water-

ethanol solution

• H=215mm

• V=8kV
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Parametric study

 L (V) – length of the rectilinear part

  (V) – angle of the envelope cone

L

 H

• Polymer: PEO

• Concentration: c=4%

• Solvent: 40% water-

ethanol solution

• H=215mm
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Parametric study

 U(V) – velocity of the fibre at the rectilinear part

L

 H

• Polymer: PEO

• Concentration: c=4%

• Solvent: 40% water-

ethanol solution

• H=215mm
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Electrospinning observed  at 25fps

12 cm

• Polymer: DBC

• Concentration: c=9%

• Solvent: ethanol

• H=215mm

• V=6kV



NANOFIBRES,  CDMM2005, Warsaw, Poland

Different structure of spinning fibres 

for DBC polymer

DBC: c=9% H=215mm

U=6kV U=12kV
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Parametric study

 L (V) – length of the rectilinear part

  (V) – angle of the envelope cone

L

 H

• Polymer: DBC

• Concentration: c=9%

• Solvent: ethanol

• H=215mm
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Electrospinning observed  at 25fps

12 cm

• Polymer: PAN

• Concentration: c=15%

• Solvent: DMF

• H=215mm

• V=13kV
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Different structure of spinning fibres 

for PAN polymer

PAN: c=15% H=215mm

U=13kV U=19kV
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Parametric study

 L (V) – length of the rectilinear part

  (V) – angle of the envelope cone

L

 H

• Polymer: PAN

• Concentration: c=15%

• Solvent: DMF

• H=215mm
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Electrospinning of Glycerol

12 cm

• Glycerol

• Concentration: c=88%

• Solvent: water

• H=215mm

• V=20kV
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Comparison of PEO & DBC &PAN polymers

 L (V) – length of the rectilinear part

  (V) – angle of the envelope cone

PEO DBC PAN
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Numerical model

Main assumptions

• The electric field created by the generator is 
considered static and is approximated using a 
sphere-plate capacitor configuration

• The fibre is a perfect insulator with a constant 
electric charge density distributed over its surface

• The melt is viscoelastic and has constant elastic 
modulus, viscosity and surface tension



NANOFIBRES,  CDMM2005, Warsaw, Poland

Numerical model
2. Governing equations

a – surface tension

l – stretching parameter (relative elongation)

 – viscosity

r – density

 – longitudinal stress

a – radius of the fiber
C – short-range E-field cutoff factor
E – electric field
G – elastic modulus
q – charge per unit length
r – coordinate vector
s – Lagrangian curvilinear coordinate
u – unit vector along the fiber
V – velocity vector

Mass conservation: 

Stress balance 

Momentum balance 



NANOFIBRES,  CDMM2005, Warsaw, Poland

Numerical model
3. Discretized equations

Mass conservation: 

Stress balance 

Momentum balance 
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Numerical model
4. Boundary conditions

The last particle introduced at the tips keeps a 
constant velocity until the distance to the tip 
exceeds the initial bead length l

0
: 

A small perturbation is added to the position 

of each new particle introduced near the tip:

Particles that reach the collector are 

considered neutralized and are removed from 

the fibre.

l
0
– initial bead length [input]

Q – volume flow rate [input]

e – distance to the main axis 

[input]

j – random phase
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Numerical model
5. Parametric simulations

Reference case:

a = 0.07 N/m

F = 5000 V

 = 10 Pa.s

G = 105 Pa

r = 1000 kg/m3

a
0

= 150 μm
H = 20 cm
l
0

= 1 μm
q = 200 C/m3

Q = 3.6 cm3/h

Case a F  G

1

2

3

4

5

6

3

x2

x5

/3

x2

/2
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Numerical model
Reference case:

a = 0.07 N/m

F = 5000 V

 = 10 Pa.s

G = 105 Pa

r = 1000 kg/m3

a
0

= 150 μm
H = 20 cm
l
0

= 1 μm
q = 200 C/m3

Q = 3.6 cm3/h
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Numerical model

Reference case
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Numerical model

Triple surface tension
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Numerical model

1/3 surface tension
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Numerical model

½ Voltage
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Numerical model

5 times higher viscosity
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Numerical model

Double elastic modulus
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Numerical model

Half elastic modulus
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Numerical model
Reference case:

a = 0.07 N/m

F = 5000 V

 = 10 Pa.s

G = 105 Pa

r = 1000 kg/m3

a
0

= 150 μm
H = 20 cm
l
0

= 1 μm
q = 200 C/m3

Q = 3.6 cm3/h

a = 0.21N/m F = 2500Va = 0.023N/m  = 2 Pa.s G = 5.104 PaG = 2.105 Pa
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Conclusions

 Electrostatic elongation of polymer threads allows 

to produce relatively easily fibres in nano range diameters

 Collection of nano-woven of bio-active polymers, 

e.g.. chitin may have practical application for tissue growth 

 Simulations recover some key physical phenomena but fail

at modelling the straight jet portion

 The modeling of electrospun fibers is still embryonic.

Improvements are required in many areas:
- better physical description (evaporation, varying viscosity, ...)

- checking of the mathematical correctness of the model (is the

discrete charge model fully consistent?)

- development of a fast algorithm for Coulomb interactions

- ...
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