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ABSTRACT

    The problem of Rayleigh-Bernard’s convection is numerically solved for chemically equilibrium gas. The gas is considered incompressible, the layer boundaries are assumed flat, isothermal, and free of shear stresses. A Boussinesq model is used. The coefficient of buoyancy term depends from a transverse coordinate. The different convection regimes are obtained: steady-state, periodic, quasiperiodic and stochastic.

INTRODUCTION

    Actual are the problems on water convection at temperature close to the point of density maximum (about 4oC). These problems arise when considering, e.g., ice melting, water freezing and convection flows around icebergs.

    Many authors [1-3] have studied Rayleigh-Bernard’s convection in water with density anomaly. They took into account the dependence of gas density from temperature ρ = ρ(T) in the form of polynomials of second [1], third [2], and higher orders [3]. In these papers, the convection flow stability was considered in linear approximation. It was shown that the existence of density anomaly cardinally changes stability characteristics [3].

    A similar situation is also observed for convection in chemically reacting gases, for which a strong temperature dependence of density and heat expansion coefficient is typical. The kinetics of chemically equilibrium gas has been studied in [4,5].

    The goal of this paper is to construct a mathematical model of convection in chemically equilibrium gas and to study linear stability and nonlinear regimes in chemically equilibrium gas.

CHEMICALLY EQUILIBRIUM KINETICS
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    The density of chemically equilibrium gas (hydrogen-oxygen mixture) can be represented as a function of absolute temperature T and pressure P [4]:

In this case, μ - is the molar gas mass (μ0 ≤ μ ≤ μ1), R = 8.319·107 erg/grad·mole - is a universal gas constant, E = 459.2·1010erg/mole is the mean energy of reaction products dissociation, Θ = 4000 K is the average temperature of the excitation of the oscillation degree of freedom, K0 = 0.6·1015cm6/mole·s is the recombination rate constant, 
A = 5.1·1013 cm3/mole·s· K0.75 is the dissociation rate constant, and μ0 = 6 g/mole and 
μ1 = 18 g/mole are the molecular masses of gas in atomic, completely dissociated, and recombined states (for hydrogen-oxygen mixture).

    Further, as the pressure in state equation (1) is assumed constant, e.g., equal to 1 atm.
 (P = 106g/s2·cm), the density determined from eq. (1) depends only on the absolute temperature T.

    Fig. 1 shows the density of the chemically equilibrium gas mixture vs temperature ρ = ρ(T) at 103 K ≤ T ≤ 5.5·103 K and P = 1 atm. The same figure presents two asymptotics 
ρ1 = 18P/(RT) (curve 1) and ρ2 = 6P/(RT) (curve 2) corresponding to relatively low 
(T ≤ 2500 K) and high (T ≥ 4500 K) temperatures. As follows from the figure, the hydrogen-oxygen mixture density varies under chemical equilibrium with temperature by more than order of magnitude.
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    A strong temperature dependence of heat expansion coefficient 

is typical of state equation (1). Fig. 2 shows the curve β = β(T) at P = 1 atm. and asymptotics 
β = 1/T valid for T ≤ 2000 K and T ≥ 5000 K.

MATHEMATICAL MODEL
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    Convection of incompressible fluids in Boussinesq approximation describes the system of equations
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where u, and v are the velocities in x and y directions, P is the pressure, ρ is the density (ρ0 is the characteristic value of density), T is the temperature, Δ f = fxx+fyy is the Laplace operator, 
ν  and χ are the coefficients of kinematic viscosity and temperature conductivity, respectively, and
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is the heat expansion coefficient considered here as an absolute temperature function.

      Figure 1  Dependence ρ = ρ(T)                               Figure 2  Dependence β = β(T)    

 This system of equations has the equilibrium solution
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where Th and Tc are the temperatures of lower and upper boundaries, respectively, and H is the layer thickness.
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    Let us write down eq. (2) in deviations from the equilibrium solution (T = Tr+Q, P = Pr+P1):

[image: image17.wmf]For the right-hand side of the third equation of the system of equations (3), we restrict ourselves to the first approximation by temperature deviation Q = T - Tr
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with T = Tr. Selecting the characteristic values for length – H, time – H2/ ν, velocity - χ/H, pressure - ρ0νχ/H2, and temperature - δT = Th-Tc , by the conventional method, after convertion to a dimensionless form and transition to the stream function φ and vorticity ω instead of eq. (3)  from formulas u = φy, v = - φx, ω = vx - uy we derive
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In this case, Ra = gβcH3δT/χν and Pr = ν/χ are the Rayleigh and Prandtl numbers, respectively, and 
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Restricting ourselves for β(T) to the quadratic dependence β(T) = β0 + β1T + β2T2, we obtain the expression for βp:
As βc, we select the mean value of the heat expansion coefficient βc = β at T = T0, where 
T0 = (Th+Tc)/2 is the average temperature.

    System (4) is solved in the region G={(x,y) | 0 ≤ x ≤ L, 0 ≤ y ≤ 1} with the boundary conditions φ = ω = Q = 0 at y = 0,1; 0 ≤ x ≤ L (at horizontal boundaries) and φx = ωx = Q = 0 at x = 0, L; 0 ≤ y ≤ 1 (at vertical boundaries).
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LINEAR  ANALYSIS 

    Now we consider the linear analog of system (4). To determine the stability of the infinitely
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small perturbations we use Galerkin’s method. We are seeking for approximate solutions to in the form:
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where Sm = α2 + m2π2.
    After using the standard procedure of Galerkin’s method we find equation for 
eigen values λ:
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where A is the quadratic matrix with components Akm  (1 ≤ k, m ≤ N)
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and D is the diagonal matrix with elements 

    In numerical calculations, we used the program of analytical calculations Maple 5 
Release 5, which allowed us to derive the characteristic 2·N - order polynomial over λ and find its roots from eq. (5). In calculations, we used up to 6 (N = 1,2,..,6) harmonics. Methodical calculations performed for different N show that the neutral curve and increments of the most dangerous perturbation can be calculated to within graphical accuracy using one harmonic 
(N = 1). For N = 1, from (5) we get
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where  S = α2 + π2,  and 
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Equation (6) gives the Rayleigh numbers corresponding to a neutral curve: 
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The critical value for the Rayleigh number (minimum Ra1 by α) can be found from the formula 
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  Factor 657.511 is distinguished as a critical value of the Rayleigh number for fluid with a constant thermal expansion coefficient β. Within the approximation selected, Racr is not explicitly dependent from δT and the Prandtl number, and is determined by the thermal expansion parameters βc, β0, β1, β2, which are functions from temperature T.

         Fig. 3 shows the critical Rayleigh number as a function of T at pressure P = 0.1 atm. (curve 1), P = 1 atm. (curve 2), and P = 10 atm. (curve 3). The points denote the values of absolute temperature corresponding to the boundary of a stability region.

         Figure 4 demonstrates dependence of the minimum (by T) of critical values Racr from  pressure. The points show the calculated values. 

NUMERICAL METHOD

    We are going to describe briefly the spectrally difference numerical method for solving the system equations (4). For details see [6].
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      The unknown values of ω, φ, and Q will be sought in the form

where α = π/L is the wave number and ρk = {0.5 (at k = 0, N) and 1 (at 1 ≤ k ≤ N-1)}.

             Following the general ideology of splitting method, in numerical calculations of system (4), the transition from layer n to layer n+1 with time is performed in two steps.

            On the first, we take into account the linear development of perturbations neglecting the interaction of harmonics. The linear system of standard differential equations solved here analytically without any time approximation. The corresponding formulas [6] were derived by means of the program of analytical calculations Maple V release 4.

        In the second step, the nonlinear convection transfer is taken into account, i.e., the interaction of harmonics. These equations were solved using the finite-difference scheme of varying directions. Earlier, this scheme has been successfully applied for calculating turbulent convection flows with vertical side heating [7].
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       The unknown fields are recalculated from spectral space into physical one and back with the help of standard programs of the fast Fourier transform by cosines and sines.

       Figure 3  Racr as a function of T                                           Figure 4  Minimum Racr (by T) from P

CONVECTION IN CHEMICALLY EQUILIBRIUM GAS

    Now, I would like to say some words about the choice of the number of harmonics N and M. To correctly account for flow progress (at a given α), it is necessary to take into account all increasing long-wave harmonics and a sufficient number of decaying short-wave ones. According to the results from the linear analysis of differential problem (4), the harmonics decay at k > 34 or m > 6 (at Ra/Racr = 1300, Pr = 0.7, T0 = 3000 K). Therefore, we have selected N = 64 and M = 16. Results of the appropriate testing of the algorithm used for 
β = const are given in [6].
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    The Nusselt numbers were calculated by the lower and upper 

horizontal boundaries, mean value Nusselt number Nu = (Nu0 + Nu1)/2.

    As initial conditions, we, as a rule, used ω(0, x, y) = cos(2x)·sin(πy) for vorticity and Q = 0 for temperature. Sometimes, calculating the steady-state convection regimes, the stationary fields obtained for other parameters were set as initial. All calculations were performed at 
Pr = 0.7 and α = 1.

Steady-State Convection Regimes

    Only stationary solutions were found for supercriticality r ≤ 540, r = Ra/Racr. Depending on initial data, the following regimes of stationary convection can be obtained:

two-vortex, three-vortex, four-vortex, five-vortex, and six-vortex. Such abundance of stable stationary solutions is typical of convection and was recorded experimentally [8].

    Fig. 5 shows the Nusselt numbers Nu = (Nu0 + Nu1)/2 as a supercriticality function for two-(curve 1), three-(curve 2), four-(curve 3), five-(curve 4), and six-(curve 5) vortex stationary solutions.

Periodic and Quasiperiodic Regimes

    The periodic and quasiperiodic regimes were observed for supercriticalities 540 ≤ r ≤ 1100.             All recorded periodic and quasiperiodic regimes can be divided into two groups: high-frequency and low-frequency.

    The high-frequency regimes (540 ≤ r ≤ 850) are characterized by high oscillation frequency,  simple time spectrum with one or two distinguished frequencies without combination and multiple ones. 

    The low-frequency regimes (850 ≤ r ≤ 1100) are characterized by low oscillation frequency over time, a great number of combination frequencies over time spectrum. All peaks in the time spectrum are the linear combinations of two basic frequencies f1 and f2 of the form m·f1±n·f2 where m and n are the integers.

Stochastic Convection Regime

    Stochastic solutions are observed for supercriticalities r ≥ 1100. In convection with 
β = const, the stochastic regimes were detected for r = 1000, Pr = 2 [6].

    The Nusselt numbers Nu0 (solid line), Nu1 (dashed line), and the time spectrum of the time dependence of Nu0 are shown in fig. 6 and fig. 7, respectively (r = 1300). Fig. 7 shows that the time spectrum became continuous.

    The basic feature of chaos is a considerable dependence on initial conditions [9]. A comparison of calculated results with close initial data (r = 1300) testifies to the considerable dependence on initial data (exponential spreading of trajectories):

Calculation I      -       ω1,2 = 1, Q = 0;

Calculation II     -       ω1,2 = 1.001, Q = 0;

Calculation III    -       ω1,2 = 1, ω2,2 = 0.001, Q = 0.
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        Figure 5  Nusselt numbers for stationary regimes   Figure  6  Nusselt number as a function from t

    Fig. 8 shows the Nusselt numbers Nu0 as time functions corresponding to calculations I-III (curves 1-3). The mean deviations of a stream function have been also calculated. As follows from the fig. 8, the results of calculations I and III differ substantially at t ≥ 0.055 and the analysis of stream function deviations shows an exponential increase (almost as exp(191·t)) in the range (0.05344, 0.07268). Similarly, the results of calculations I and II also differ for
t ≥ 0.19 and in the range (0.17746, 0.1977) the mean deviation of stream function is proportional to exp(174·t).

CONCLUSIONS

    Let us briefly formulate the main conclusions of the work.

1. For system describing the development of the infinitely small perturbations of chemically equilibrium gas, the equation was derived for the increment rise of the most dangerous perturbation. The formula was obtained for the critical Rayleigh number depending on the parameters of thermal expansion βc, β0, β1, β2, which are functions from temperature T.

    Analyzing the results of numerical solution to nonlinear system (4), we conclude that:

2. Up to supercriticality r = 540 only the different stationary regimes were recorded. 

3. With supercriticalities 540 ≤ r ≤ 1100, the periodic and quasiperiodic, high- and low-frequency regimes were observed.

4. With supercriticality r > 1100, the stochastic convection regime was calculated. It is characterized by the continuous time spectrum. The solution considerably depends on initial data. The initially close trajectories in the phase space spread exponentially.
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