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Introduction
At last time many researchers studied thermal Rayleigh-Benard convection using

numerical simulation. As rule, they used spectral methods with periodic boundary conditions. In
numerical simulations were derived secondary stationary, periodic, quasiperiodic and stochastic
regimes [1-4]. Some authors performed 2-D and 3-D simulations for moderate and high
supercriticality with free [5-7,21] and rigid [8,9] boundary conditions on the horizontal plates.
The results of correct performed numerical simulations with rigid boundary conditions, as rule,
have good agreement with experimental data (see, for example, fig.4 and 5). On the other hand,
it seems natural that results of simulations with free and rigid boundary conditions must draw
together at enough high supercriticality values. The question of togetherness of solutions with
free and rigid boundary conditions is practical, since using of free boundary conditions very
simplifies the DNS of turbulent convection, simple and efficient numerical algorithms are
generated using the formulas of linear stability theory [10]. It is said in work [6] that difference
between solutions with free and rigid boundary conditions is in thin layers near bottom and upper
boundaries, since rigid boundaries impose zero values of vertical vorticity on them.

Nevertheless, available data of numerical simulations with free boundary conditions have a
bad agreement with experimental data and data of numerical simulations with rigid boundary
conditions. In table 1 we compare the data of numerical simulations and experimental data at
moderate supercriticality r, here r = Ra/Racr is supercriticality.

Table 1. Comparing of Nusselt number at moderate supercriticality.

r 2-D, free, water[5] 2-D, rigid, water[9] 3-D, rigid, air[8] exp.in water[11]
750 20.17 8.42 9.01 9.13
1125 23.38 9.47 10.08 10.22

 In table 2 we compare the data of numerical simulations by spectral methods in air and
water and experimental data in gaseous He at high supercriticality.

Table 2. Comparing of Nusselt number at high supercriticality.

r [6], free
3-D, air

[7], free
3-D, air

[8], rigid
3-D, air

[9], rigid
2-D, water

[12], experiment
in gaseous He

9800 23.0 23.0 ± 0.6 18.3 17.7 18.0
33000 33.0 - 24.8 25.3
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In our opinion, these deviations of solutions results are coupled with insufficiently high
accuracy of calculations. For correct representation of solution, the exact reproduction of spectral
characteristics in linear approach [10] and the enough big number of harmonics [13] are
necessary.

The aim of this work is the proof of the togetherness of solutions of convection problems
with free and rigid boundary conditions and of experimental data for enough big value of
supercriticality.

Problem formulation and numerical method
Turbulent convectional flow in a horizontal layer numerically is simulated at heating from

below. The fluid is viscous and incompressible. The flow is time-dependent and two-
dimensional. Boundaries of a layer are isothermal and free from shearing stresses. The model
Boussinesq is used without semiempirical relationships. The dimensionless system of equations
in terms of deviations from an equilibrium solution, representation of problem solution in the
form of eigenfunctions sum of linear stability theory, the boundary conditions, the special
numerical method and testing are described in work [10]. Solution is periodic, but we consider
this solution only in half of period in horizontal direction, therefore the periodic boundary
conditions change on the other boundary conditions on the side walls, according to form of
solution.

Following a general ideology of the splitting method, transition from layer n to layer n+1
over time is performed in two steps. On the first step, we take into account a linear progress of
perturbations neglecting interaction between harmonics. We get the system of two ordinary
differential equations for two unknown amplitudes (vortex and temperature deviation) in spectral
space solving analytically without any approximations over time. The analytical formulas used
here are near to the formulas of linear stability theory. The second step takes into account the
nonlinear convection transfer, the interaction between harmonics. Here we use a finite difference
method of alternating directions for solving the system equations of nonlinear convective
transfer in physical space.

Using of analytical formulas on the first step of splitting guarantees the exact reproduction
of spectral curves, it guarantees exact reproduction of infinitesimal perturbations of equilibrium
solution.

                     Fig.1. Comparing of the spectral curves.

The fig.1 shows spectral characteristics of differential system (solid line) and of numerical
method (dash line) for first three modes at r = 1000, Pr = 2, N = 65, M = 15, here Pr is Prandtl
number, N and M are number of harmonics in space directions.

The accuracy of reproduction of finite perturbations we check by performing of integral
identity following from equation for temperature.

At little supercriticality (up to r ≈ 50) the Nusselt numbers from our simulations have a
good agreement with results of works [5,14,15].

 Establishing of the mean Nusselt number (on the time) determined the duration of
simulations on the time.



DNS of turbulent convection
We simulated the convection flows for the Prandtl number Pr = 10, Rayleigh numbers are

from 2 up to 16000 times of the critical value. For all simulations the interval of periodicity is
equal to 2π. We used 65*15 harmonics for supercriticality r less than 1000 and 129*31harmonics
for r ≥ 1000.

The fig.2 represents the average temperature profile. At the fig.2 and 3 below Y denotes
transverse coordinate. At the fig.2 sign ● denotes experimental results [16] (r = 5900, air), dash
line � experimental results [11] (r = 5500, water), solid line - results of present work (r = 5800).

The fig.3 represents the root-mean-square of vertical velocity deviation (fluctuations) from
average profile one. Here sign ● denotes the experimental results  [16] (r = 5900, air), solid line -
results of present work (r = 5500).

   Fig.2. Average temperature profile.                         Fig.3. R.m.s. of vertical velocity.

Fig.2 and 3 show that results of numerical 2-D simulation are consistent with experimental
data at supercriticality r ≈ 6000.

The r.m.s. values of temperature fluctuations in the center (at Y = 0.5) are plotted on the
fig. 4 versus supercriticality r up to 16000. Here  ● is numerical result of present work (Pr = 10),
dash line � 3-D numerical simulation [8] (air), dadot � experimental results [19] (air), sing X �
denotes experimental results [20] (only single point, air), sing ○ - experimental results [16] (air),
sing □ - 3-D numerical simulation with free boundary conditions [21].

The r.m.s. values of vertical velocity fluctuations in the centre (at Y = 0.5) are plotted on
the fig. 5 versus supercriticality r up to 16000. Here  ● is numerical result of present work
(Pr = 10), dash line � 3-D numerical simulation [8] (air), dadot � experimental results [19] (air),
sing  □ - 3-D numerical simulation with free boundary conditions [21].

        Fig.4. R.m.s. of temperature fluctuations.                        Fig. 5. R.m.s. of vertical velocity fluctuations.



Fig. 4 and 5 show that data of our 2-D numerical simulation is consistent with
experimental data and results of 3-D numerical simulation, a big scatter of numerical data up to
r ≈ 1000 mirrors the existent scatter in experimental data (fig.4 and work [16]).

The fig. 6 represents mean (time-average) Nusselt number versus supercriticality from 200
up to 16000. Here sign ● denotes the results of present work, solid line - experimental results
[11] (water), □ - 3-D numerical simulation [8] (air), dadot line - the results of the experimental
work [12] (helium gas), sign ○ - 2-D simulation [9] (water) and sign ■ denotes the numerical
results of works [6,7] with free boundary conditions.

A least squares fit for Nusselt number versus r from our simulations is

 this formula is right for r ≥ 800. It is interesting, that such low values of exponent are more
typical for fluids with low Prandtl numbers, for example, for mercury [18]. Possibly, it is
coupled with restrictions of 2-D simulation.

At fig.7 also represents mean Nusselt number versus supercriticality, but for 20 ≤ r ≤ 1500.
Here sign ● - results of present work, □ - numerical simulation [8], ◊ - numerical simulation [17],
x - numerical simulation [9], dash line - numerical simulation [5] with free boundary conditions,
matastable part of regime 1 (for 340 ≤ r ≤ 610) and experiment [18] (water, fat line), solid line �
experiment [11] (water) and sing ○ - experiment Silveston, 1958 (water, these results from work
[18]).

Table 3. Comparing of Nusselt Number for free and rigid boundary conditions.

     r Present (2-D, free) [9] (2-D, rigid) [8] (3-D, rigid)
750 9.76 8.42 9.02
1500 11.22 10.41 10.92
3000 13.19 12.86 13.22
6000 15.65 15.59 16.01
12000 18.56 18.79 19.39

Data of work [8] were calculated on the formula Nu = 1.45·r0.276 from this work. The
results of 2-D simulations (present work and work [9]) are practically coincide for
r ≥ 3000, the results of present work and results of 3-D simulation [8] have reasonably good
agreement.

    Fig.6. Nusselt number versus r.                                  Fig.7. Nusselt number at moderate r.
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We note that for r ≤ 700 we derived numerically two different regimes of convection.
Nusselt numbers of regime1 have reasonably good agreement with both experimental results and
results of numerical simulations with rigid boundary conditions. For 340 ≤ r ≤ 610 regime 1 is
metastable in 2-D simulations. For r ≈ 200 in regime 2 is neatly seen a jump in dependence
Nusselt number versus r, also in experimental work [12] for r ≈ 200 was discovered a same jump
in heat flux and some hysteresis.

Conclusion
In conclusion, we emphasize that results of our 2-D simulations with free boundary

conditions on the horizontal plates are closely allied both with results of 2-D and 3-D simulations
with rigid boundary conditions on the horizontal plates and experimental data for enough high
values of supercriticality. In particular, the values of Nusselt number at
r > 800 describe by formula:

it  is close to experimental data and data of numerical simulations with rigid boundary
conditions. The profiles of mean temperature and r.m.s. of vertical velocity fluctuations are
typical for stochastic regimes and turbulent convection. For r ≈ 6000 these profiles and
experimental data are close. Some loss of simulation accuracy for high supercriticality (r > 104,
fig.5) possibly is coupled with restrictions of 2-D simulation. The scatter of numerical data (up to
r ≈ 1000) and existence of various regimes of convection (up to r ≈ 700) mirror the existent
scatter in experimental data.
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