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I ntroduction

At last time many researchers studied thermal Rayleigh-Benard convection using
numerical simulation. As rule, they used spectral methods with periodic boundary conditions. In
numerical simulations were derived secondary stationary, periodic, quasiperiodic and stochastic
regimes [1,2]. Some authors performed 2-D and 3-D simulations for high supercriticality with
free [3,4] and rigid [5,6] boundary conditions on the horizontal plates.

So far the full simulation of time-dependent three-dimensional convection is a very
complex problem demanding large resources. The reasons are: 1. The existence of rapidly
increasing and rapidly decreasing of harmonics in linear approach (at r = Ra/Racr = 1000 and
Pr = 1 one of harmonics increases as e** t). 2. The necessity of conformity in linear approach of
spectral characteristics of differential problem and numerical method [7]. 3. The necessity of
calculations on the enough big time of order of several of thermal diffusion time with enough big
number of degrees of freedom.

As a rule, results of simulations of convection with free horizontal boundaries have a bad
agreement with experimental data and results of simulations with rigid horizontal boundaries
[3,4]. On the contrary, the correct performed simulations with rigid boundary conditions on the
horizontal plates have a good agreement with experimental data [5,6,8]. On the other hand, it
seems natural that results of simulations with free and rigid boundary conditions must draw
together at enough high supercriticality values. The question of togetherness of solutions with
free and rigid boundary conditions is practical, since using of free boundary conditions very
simplifies the DNS of turbulent convection, simple and efficient numerical algorithms are
generated using the formulas of linear stability theory [9]. The using of formulas from linear
stability theory guarantees the exact conformity of spectral characteristics of differential problem
and numerical method. The work [9] contains the some results of comparative analysis of this
spectral method and finite-difference used for simulation of turbulent convection [10].

The aim of this work is linear and nonlinear (on the model nonlinear system of equations)
analysis of spectral numerical method suggested in work [9] for simulation of convection with
free horizontal boundaries, performing of numerical calculations of turbulent convection at
supercriticality of order of 1000 times critical value, comparing of derived results with
experimental data and numerical results of other authors.

Problem for mulation and numerical method

Turbulent convective flow in a horizontal layer numerically is simulated at heating from
below. The fluid is viscous and incompressible. The flow is time-dependent and two-
dimensional. Boundaries of a layer are isothermal and free from shearing stresses. The model
Boussinesq is used without semiempirical relationships.
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The dimensionless input set of equations given in terms of deviations from an equilibrium
solution is of the form [9]:
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where ¢ is a stream function, o is the vortex, Q is the temperature deviation from equilibrium
profile (the total temperature being T = 1 - y + Q), Af = f, +f,y is the Laplace operator,
Ra = gBH’dQ/yv is the Rayleigh number, Pr = v/y is the Prandtl number, g is the gravitational
acceleration, B, v, y are the coefficients of thermal expansion, kinematics viscosity and thermal
conductivity, respectively, H is the layer thickness and dQ is the temperature difference on the
horizontal boundaries.

The required values ®, ¢ and Q are to be sought in the form:
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where a = n/L is the wave number, and py = {0.5 (atk =0, N) and 1 (at ISk <N-1)},
0<k<N,1<m<M-1, Skm = o’k? + w?m?. Solution is periodic, but we consider this solution
only in half of period in X — direction, therefore the periodic problem changes on the problem
with boundary conditions on the side walls, according to form of solution.

Following a general ideology of the splitting method, transition from layer n to layer n+1
on the time is performed in two steps. On the first step, we take into account a linear

development of perturbations without interaction between harmonics.
Step 1.
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This linear system decides on the analytic formulas in spectral space.
The second step takes into account the nonlinear convection transfer, i.e., the interaction
between harmonics.

Step 2.
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Here we use a finite-difference scheme of alternating directions for solving the system equations
of nonlinear convective transfer in physical space. This scheme was used for simulation of
turbulent convection [10]. For transition from spectral space into physical space and back,



standard programs of FFT were used. The numerical method has the first order of approximation
on the time and the second order of approximation on the space variables.

The coefficients @, and @y in (2) defined: 1. By value of the stream function with layer n on
the time (Scheme 1). 2. By value of the stream function after first step of splitting (Scheme 2). 3.
By value of arithmetic mean of stream function on the layers n and n+1 on the time (Scheme 3).
Realization of Scheme 3 demands the introduction of iteration process.

Linear analysis

Linear analogs of differential system (1) and numerical method are considering and
calculating them spectral characteristics. By closeness them we may estimate the accuracy of
reproduction of infinitesimal disturbances by numerical method.

We consider the solutions of linear problems in a view:
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here a and b are constants and A is eigenvalue.

The fig.1 represents the spectral curves for differential problem (solid line), suggested
spectral method (sign ®) and finite-difference method (dash line)[10] for the first three modes
(m = 1,2,3) A = Ma) (for r = 1000, Pr =1, N = 64, M = 16, t = 4 10™). On the fig. 2 most
unstable mode is showed (m = 1) for various spectral methods, here solid line represents the
differential problem, sign e - present method, dash line - Orszag method (changed for 2-D)[2],
dadot —[11], sign o - [7].
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Fig.1. Spectral curves. Fig.2. Spectral curves for the spectral methods.

The fig. 1 shows that suggested spectral method has more accuracy than finite-difference.
The fig.2 shows that suggested spectral method exact reproduces the spectral characteristics of
differential problem even at big step on the time. It is the consequence of using of analytic
formulas on the first step of the splitting. The exact reproduction of spectral characteristics
guarantees the exact reproduction of infinitesimal disturbances.

Unfortunately, the linear analysis do not allows investigating the approximation of
nonlinear terms on the time (Scheme 1 — 3).

Nonlinear analysis

We perform the nonlinear analysis on the model nonlinear system of equations:
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The system (3) has private solution in waveform:
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here A = 2ap/S, S =a’+p?, C, and C, are arbitrary constants. The same solutions have and
suggested spectral method, then these solutions may compare. In a similar way, we analyzed
finite difference schemes for nonlinear equation with oscillating viscosity [12] and finite
difference method for calculation of viscoelastic flows [13].

Let the values of p and n on the layer n on the time are well known, we will derive the
expressions in form of power series for values of p and 1 on the layer n+1 on the time.

After cumbersome calculations with Maple V program we have:
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here k = 2 for Schemes 1 and 2 and k = 3 for scheme 3.

These formulas show that amplitudes p and n calculate with the same accuracy by
Schemes 1-3, and that using of Schemes 1 and 2 leads to decrease of calculation accuracy only in
phase speed of solution. For direct numerical simulation (DNS) of turbulent convection using of
Schemes 1 and 2 is expedient.

DNS of turbulent convection

We have simulated the Raylegh-Benard convection with a =1, N =64, M = 16, Pr =2 or
10 and r = Ra/Racr up to 1000 times critical value. The simulations were finished if increasing of
time interval do not leaded to changing of mean Nusselt number.

The calculated Nusselt numbers at 5 <r < 50 (Pr = 10) have a good agreement with data of
works [3,11,14].

The fig.3 represents isotherms of full temperature, above — experimental interferogram at
r = 2.2 in water [15], below — stationary solution derived by suggested method at r = 2 and
Pr=2.

Fig.3. Experimental and calculated interferograms of full temperature.



The fig. 3 shows the startling visual coincidence of experimental and calculated
temperature isotherms.

The fig. 4 represents profile of full temperature, here sign ® - results of present work at
r = 1000 and Pr = 10, sign o - experimental results [16] at r = 1500 in air, solid line —
experimental results [17] at r =1000 in water. The fig.5 shows profile of r.m.s. temperature
fluctuations, here sign e - results of present work at r = 400 and Pr = 10, solid line — numerical
results [8] at r = 370 in air, sign ¢ - experimental results [16] at r = 370 in air, dash line —
experiment [18] at r =400 in air.
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Fig.4. Profile of full temperature. Fig.5. Profile of r.m.s. temperature fluctuations.

The fig.4 shows that result of present work corresponds to experimental results in water
and air at supercriticality r = 1000. The fig.5 shows that derived results correspond to numerical
and experimental results of other authors at r = 400. The big deviations may be seen only in
single point near bottom boundary at y = 0. The fig.5 shows also a big scatter in experimental
data.

The table 1 represents the Nusselt numbers at r = 1000 derived by suggested spectral
method (Pr = 10), data of numerical simulation with free boundary conditions [3], data of
numerical simulation with rigid boundary conditions [6] and data of experimental works in water
[17,19].

Table 1. Comparison of Nusselt number at r = 1000 in water.
Present [3], free [6], rigid [17], exp. [19], exp.
9.808 22.401 9.365 9.887 9.705

The arithmetic mean of experimental values from table 1 is equal to 9.796, it differs
weakly from result of present work. The value of Nusselt number from work [3] is significantly
overstated.

Conclusion

The suggested spectral method reproduces exactly the spectral characteristics of
differential problem even at big step on the time. It guarantees exact representation of
development of infinitesimal disturbances of equilibrium (trivial for system (1)) solution.

Nonlinear analysis of suggested numerical method shows that calculation of coefficients of
nonlinear transfer (second step of splitting (2)) by the values with n time layer (Scheme 1) and
by the values after first step of splitting (Scheme 2) leads to decrease of calculation accuracy
only of phase speed of solution. For direct numerical simulation of turbulent convection using of
Schemes 1 and 2 is expedient.

Results of calculations correspond to experimental data in turbulent convection and to
results of numerical investigations of other authors.
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