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Modelling electrospinning of nanofibres
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Electrospinning is based on so-called bending instability which results in an erratic spiralling motion of the liquid jet as it pro-
ceeds towards a collecting electrode, where it is eventually deposited as a mat of micro/nanosized fibres. Most electrospinning
models formulated within the slender approximation rely, however, on an inconsistent description of electrostatic interactions
which renders them grossly inappropriate whenever the discretization is either too coarse or too fine. The present work aims
at proposing a discrete slender model which is numerically consistent (allowing use of arbitrary fine meshes) and remains
accurate even for coarse meshes. At the same time, efficient numerical techniques based on hierarchical charge clustering
are introduced that drastically decrease computational times. Finally, a versatile boundary value method is implemented to
enforce fixed-potential boundary conditions, allowing realistic electrode configurations to be investigated.
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Electrospinning is a simple and relatively inexpensive mean of producing continuous fibres with diameters ranging from
micrometers down to a few nanometres. Nonwovens of electrospun fibres are obtained from a jet of polymer solution stretched
by an electric field. Although most polymeric solutions or melts may be used for electrospinning, the achievement of stable
operation is usually the result of a tedious trial-and-error parametrical optimization procedure. On the other hand the physical
and mathematical description of the electrospinning process remain in a premature state. The existing discrete models are
based on point charges connected by dumbbell elements [1–5]. One serious concern relates to the evaluation of short-range
interactions, which in the case of standard discrete integration methods require very dense grids due to the large contribution
of short-range electrostatic interactions within distances of the order of the fibre radius [1, 6]. As the fibre radius is about
103 − 105 times smaller than the macroscopic scales of interest, it appears most desirable to devise a discrete model that
exploits the slenderness of the fibre to evaluate short-range interactions in an efficient manner. Likewise, the computation of
long-range electrostatic interactions can easily become intractable due to the O

(

n2
)

operation count for a pairwise evaluation
of interactions between n elements. In addition current numerical models are based on the assumption of a static external
electric field, whereas in reality the external field is modulated by the net space charge of the fibre so as to keep constant the
potential over the electrodes. An efficient handling of long-range interactions can theoretically achieve O (n log n) operation
count, or evenO (n) for the fast multipole method (FMM). The proposed here treecode algorithm [7] considers particle-cluster
interactions and achieves O (n log n) complexity. Generally it is a time-dependent three-dimensional generalization of known
slender models [2, 4, 5, 8], and solves the mass and momentum conservation equation for the Maxwell viscoelastic fluid. The
mass conservation and momentum equations accordingly read
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Here a is the fibre radius, v is the velocity of the fibre, ξ is the arc length along the fibre, ρ is the mass density, ẍ denotes
the acceleration vector, γ is the surface tension coefficient, t̂ is the local unit vector tangent to the fibre, λ is the linear charge
density, E is the electric field and τ is the viscoelastic stress. The stress is given by a Maxwell viscoelastic constitutive
equation
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∂ẋ
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· t̂. (2)

Here G is the elastic modulus, µ the fluid viscosity and ε the Lagrangian axial strain.
A Lagrangian discrete model is used to solve the problem numerically. The fibre is first decomposed into discrete charged

elements Q
i+ 1

2

, the length of which is typically much greater than the fibre radius, but smaller than other characteristic lengths
of interest (such as the curvature radius). The equation of motion is then resolved at the interfaces of each element, where all
forces are priorly evaluated. After displacements have been calculated, the radius in the central sections of elements Q
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, is
straightforwardly obtained since the volume of each element is conserved. The forces at each collocation node are computed
from the following discrete form of the momentum equation,
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Fig. 1 Observed electrospinning nanofiber (left) and its simulated counterpart (right).

The values ai, τi, λi required at the collocation nodes are linearly interpolated from those computed in the central section
of the neighbouring elements. The local tangent vector t̂i and curvature vector κn̂i are computed from the approximate
osculating circle defined by (Ni−1, Ni, Ni+1).

Time integration is realized with a classical leapfrog scheme. Dynamic refinement is used in simulations to maintain the
size of elements below a prescribed characteristic length `max; whenever an element is elongated beyond `max, it is split into
two elements, each containing half the charge and mass of the initial element.

The needle and the grounded collector are idealized by a point-charge/plate capacitor configuration. By implementing
treecode algorithm charge elements are recursively clustered and the monopole coefficients (charge and centre of charge) of
the clusters are computed. The field at a location Ni is then computed by considering only the largest clusters which are
sufficiently well separated. At each time step, a binary tree is thus constituted by recursively grouping neighbours two by two,
calculating at each level the smallest enclosing spheres that contain the cluster pairs. At the inlet (tip of the needle), the volume
flow rate Qv , the surface charge density σ0 and the fibre radius a0 are prescribed. The initial stress is set to zero. A small
random perturbation to the position of each element introduced at the inlet is imposed, so as to initiate the bending instability.
The magnitude of this perturbation has no notable influence on the simulation results, provided that it is small enough [7].

Behaviour of the code was tested using parameters typical for the experiment. Figure 1 shows an example of high speed
recording of electrospinning nanofibre of PEO (polyethylene oxide) aqueous solution and numerical simulation performed
with the present code. The main futures of the bending process are well reproduced, except missing initial straight part of
the jet – not included in the present model. Several test runs performed confirmed general ability of the code to replicate our
previous findings, i.e. increased electrical potential, solution viscosity and elastic modulus decreased jet sweeping amplitude,
effectively seen as decreasing of the spiral cone. New algorithm appeared to be robust and fast comparing with our previous
attempts [1], allowing to perform several parametric studies in a relatively short time. Father development is necessary to
implement development of the initial destabilisation of the straight part of the jet and variation of its physical properties
during polymer solidification and solvent evaporation.
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