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We look directly into the phase space of experimental or numerical data to derive nonlinear equations
of motion. Our example is the dynamics of viscous droplets. While the smallest useful dimension of
phase space turns out to be three, we apply methods to visualize four, five, six dimensions and more.
These methods are Poincaré sections and condensation of variables. The resulting equations of motion
are extremely simple but nevertheless realistic.

1. INTRODUCTION

Numerical models produce a huge amount of data but often do not facilitate a better understanding
of the physical problem. Nevertheless, comprehensive numerical studies are necessary as a first step
when there are no suitable approximations at hand. The indispensable second step of identifying
the main physical properties and developing a simple analytical description often represents a major
difficulty.

Usually, data sets are evaluated by plotting time series, Fourier spectra, various statistical
properties etc. But nonlinearities depreciate these techniques as they rarely yield concise and thus
instructive descriptions.

The aim of this paper is to show that the concept of phase space in connection with interactive
computer graphics [1] can be used to perform the second step even if nonlinearities prevail. Instead
of a formal description we discuss an actual example: nonlinear oscillations of a viscous droplet.

The dynamics of a droplet formed by an incompressible viscous fluid is one of the classical prob-
lems in hydrodynamics which has occupied many scientists during the last two centuries. The only
analytical accounts for this subject are the linear theory of small amplitude oscillations [2—4] and
the weakly nonlinear approximations of Tsamopoulos and Brown [5] and Natarajan and Brown [6]
for strictly periodic solutions. On the other hand, measurements and numerical investigations show
that these analytical approaches agree poorly with reality [7,8]. Even the asymptotic dynamics of
small amplitude oscillations seems to be dominated by nonlinearities, leading to phenomena like
self-organisation of the surface modes [9], in contradiction to the analytical theories. However, fur-
ther measurements and numerical computations do not help in understanding these discrepancies.
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After giving a brief summary of available droplet models and experimental results (Sections 2
and 3), an appropriate system of simple differential equations is developed in Section 4. This system,
when compared with the full models, drastically reduces the computation time and the required
size of computer memory. The fact — mysterious at first sight — that nonlinear effects dominate
even for very small oscillation amplitudes becomes evident. Moreover, the reduced equations are
essential for practical applications like surface tension measurement.

2. MODELLING NONLINEAR DROPLET DYNAMICS

The mathematical description of axisymmetric droplet oscillations is based on the surface
parametrization (see Fig. 1)

lo

R(0,t) = ro{ao(az...ay) + Z ai(t) P(cos@)}. (1)
=2

The droplet radius R in spherical coordinates (r,8) is expanded as a series of Legendre polynomials.
The free parameters a;...a;, are time-dependent amplitudes of standing surface waves. The
fundamental mode ay describes elongation and contraction, i.e. prolate and oblate droplet forms.
Each surface wave a; consists of [ wavelengths encircling the cross—section of the droplet. ag is a
function of the surface parameters a;...q;, to ensure the conservation of the droplet volume %71'7’8.
ay is neglected because it represents only translational motion. The parametrization (1) has been

used by Becker et al. [9,10] for experimental and theoretical analysis.

Fig. 1. A droplet cross—section described by the surface parametrization (1) in spherical
coordinates (r,8). s denotes the centre of mass with respect to the origin O. Deformations due to
the first three surface waves (solid lines) compared with the equivolumetric sphere (dashed lines)

are displayed below at a smaller scale

To our knowledge, only two droplet models which take into account all nonlinear and viscous ef-
fects are available up to now. The first, given by Basaran [8], is based on the Galerkin /finite—element
technique. The second, by Becker et al. [9], starts out with appropriate mode expansions for the
droplet surface (Eq. (1)) and the velocity field. These mode expansions follow from linear analysis
[4]. A system of ordinary differential equations for the mode amplitudes is derived by the Gaussian
variational principle.



e 7 2 hal

Alternatively, one can describe the dynamics of a viscous droplet with the approximation of
vanishing vorticity. This is possible because in the case of free boundary conditions the vorticity of
the surface layer remains finite while its thickness goes to zero with increasing Reynolds number.
Lamb [3] made use of this fact in his calculation of the linear damping constants. Fortunately, the
study of our experimental results (performed with ethanol and water droplets of approximately
0.5mm in diameter) has recently shown that the irrotational approximation is also appropriate for
the interpretation of large amplitude oscillations.

The possibility of applying Lamb’s method to the nonlinear equations has been demonstrated
by Lundgren and Mansour [7]. Using the boundary-integral method, their resulting numerical
procedure remains tedious and time consuming, hence difficult to be implemented for practical
applications. Another way is offered by the formalism of classical mechanics, describing droplet
dynamics in terms of effective masses, kinetic and surface energy, and a dissipation tensor. The
advantage over pure numerics is twofold: first, the numerical evaluation of the governing equations is
straightforward and requires only standard methods and second, the whole dynamics is determined
by a few degrees of freedom, i.e. the generalized coordinates a;...a;, and their velocities a3 ...¢q
A corresponding model for nonlinear droplet oscillations is given in the appendix.

Further simplification of modelling nonlinear droplet dynamics is possible by neglecting all vis-
cous terms. This approach is realistic only for time scales shorter than approximately one oscillation
period of ay (e.g. droplet fission [11]). As we will see in Section 4, the long-time behaviour of an
oscillating droplet cannot in any way be described without the impact of viscosity.

0"

3. TIME SERIES OF OBSERVED DROPLET OSCILLATIONS

In the following we discuss typical experimental results compared with the predictions of the full
nonlinear and viscous model (M1) given in [9], the nonlinear, irrotational (but still viscous) model
described in the appendix (M2), and the linear Lamb [3] model (M3), defined by Eqs. (24) and (25).

Fig. 2 shows the first four surface modes a5 ... a5 as functions of time for small ethanol droplets.
Observed data are compared with the predictions of M1 and M2 in Fig. 2a. These computations
require initial values for the surface amplitudes a; and their velocities @; as well as the knowledge of
the fluid density p, the kinematic viscosity v, the surface tension o and the equivolumetric radius
ro. The time unit defined by

Ty = \Jprd/30 (2)

is about %ms for the experimental conditions of Fig. 2. The value of the Reynolds number, defined
as

Re = 76/ To (3)

===
determines whether the irrotational approximation is appropriate or not. In the case of small
ethanol droplets (Re = 90) the nonlinear models M1 and M2 seem to be equivalent for the descrip-
tion of measurements.

The time series in Figs. 2a,b are typical for most of our measurements and, as we will see, repre-
sent the general asymptotic dynamics. A qualitative characterization follows from the comparison
of nonlinear and linear results (Fig. 2b).

First of all we notice the well-known enlargement of the oscillation period of a3. In detail the
frequency of ay decreases during the droplet’s elongation (az > 0) but increases during its contrac-
tion (az < 0), in other words: a self-generated frequency modulation. A similar modulation effect
is carried out in the time evolution of as. It oscillates more slowly during positive displacements of
ay and faster during negative ones. Hence the frequency of as is modulated by ay. Qualitatively,
ay and ag exhibit damped harmonic oscillations, and the nonlinear modulation effects disappear
for t — oc.
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Fig. 2. Time series of observed droplet oscillations. (a) Experimental data (dotted lines) and
computational results (M1: solid lines, M2: dashed lines); an ethanol droplet with
ro = 0.1733mm and Re = 81 (see Fig. 13 in ref. [9]). (b) Experimental data (dotted lines),
nonlinear simulation with M2 (solid lines), linear theory M3 (dashed lines); an ethanol droplet
with 79 = 0.207mm and Re = 89 (see Fig. 9 in ref. [9])

On the other hand, for the higher modes a4 and a5 the differences between nonlinear and
linear results are qualitative. For example, a4 remains almost always positive. It is phase locked
with a; and oscillates with double its frequency. According to linear theory (25) a trebling of
the fundamental frequency would be expected. Moreover, these nonlinear effects should disappear
asymptotically. As already mentioned in Section 1, this is not the case.

The differences between linear and asymptotic dynamics are also illustrated by the computation
shown in Fig. 3 where artificial initial conditions have been used. The oscillation starts with
strongly excited modes a4 and as. The modes as, az and ag get weakly excited due only to
nonlinear couplings and are not shown. It is very important to note that the energy carriers a4 and
as can initially be described very well by the linear model M3, although their amplitudes exceed
those present in “natural” oscillations. But what happens at t — oo 7 Fig. 3 shows time intervals
after several periods of the fundamental mode. For ¢/T = 50...60 the linear theory yields drastic
deviations from the nonlinear simulation. Later on, the asymptotic dynamics has fully developed,
and the time series, although at invisible small amplitudes, look similar to those shown in Fig. 2.
The aim is to understand these unexpected effects by a realistic, nevertheless extremely simplified
theory.

4. THE REDUCED DIFFERENTIAL EQUATIONS

We are looking for ordinary differential equations of the form
LD+ ...=0, [=2...5 (4)
where L D; represents the nondimensional linear terms

(i + 2;(1 )L, @E =)

LDy = b + Re

o=aTo, b=aT} (5)
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Fig. 3. Comparison of nonlinear (M2, solid lines) and linear (M3, dashed lines) description for
artificial initial conditions with excited modes a4(0) = a5(0) = 0.2 only. Three time intervals are
displayed, monitoring the initial behaviour, the transition regime and the asymptotic behaviour.

The Reynolds number is 100

and the unknown effective nonlinear terms are indicated by the ellipsis in (4).

The amplitudes as ... as, their nondimensional velocities vy . ..v5 and accelerations by . ..bs gen-
erate a 12-dimensional phase space. In order to derive the effective nonlinearities we have to “fly”
through that space and analyse the surfaces

f((lg...(15,’02...’0571)2...()5)IO (6)

that are formed by an assembly of trajectories. These surfaces are already defined by the full, yet
noninstructive differential Eqgs. (21). We ask whether they can be approximated by simple algebraic
expressions.

The numerical integration of the full differential equations yields the vector (az...as, va...vs,
by ...bs) as a discrete function of time. In the following we inspect an assembly of trajectories gen-
erated with the irrotational droplet model M2. The initial conditions correspond to measurements
with maximum droplet deformations of about 50% (with respect to equivolumetric radius 7o) and
Re ~ 90.

Let us start with the subspace az, vz, by of the fundamental mode (Fig. 4a). If a; was a linear
oscillator (LD, = 0), we would observe a plane. The nonlinear computations yield a saddle. This
result contains all information about the effective differential equation. From the fact that a surface
is visible in the as, v, bo-projection, we can conclude that ay is ruled by itself and is not affected by
other modes. The special form of a saddle requires that the effective nonlinearities are proportional
to a% and vZ. Hence, the reduced differential equation may be written

1
by + 2(1 — [1.36 £ 0.04]ay)ay + R—Ov2 ~[0.6+0.1]03 =0, (7)
e
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where the bold numbers in brackets follow from fitting LD3 + 3[]-a3 4+ []-v3 = 0 to the data.
The values of the standard deviations measure the significance of the coeflicients. Notice that the
frequency modulation % 1.36 a3 is of order unity, i.e. it is as important as the term known from

linear analysis <.

v3

a3

(a) (b) (c)

Fig. 4. Phase space views. (a) and (b) — the subspaces (a3, v3,b2) and (as, vs, b3), respectively.
The size of the data points corresponds to their position with respect to the picture plane. (c¢) —
two Poincaré sections with respect to ay. The size of the data points corresponds to as

Examination of fig. 4b shows that in the as, v3, b3 subspace the points do not form a surface. We
observe an irregular change of their depth (marked here by point size) in the figure plane. Hence,
az is influenced by other modes, and the surface defined by LDs + ... = 0 lies within at least a
four-dimensional subspace. We can analyze this surface using the method of Poincaré.

From the discussion in the previous section we conclude that b3 is a function of a3, vs and as.
This can be proved by considering Poincaré sections with fixed ay. Therefore we generate several
data subsets, each containing only phase space points with ay confined within a certain interval.
In Fig. 4c two of these Poincaré sections are shown in the ag,vs, bs-projection. The heavy and
light points correspond to the largest and smallest values of aq, respectively. Each Poincaré section
forms approximately a plane whose slope with respect to a3 obviously depends on the size of points,
i.e. on the value of ay. This behaviour allows the evaluation of coefficients in the assumed form
of the differential equation, i.e. b3 = fi(az)as + f2vs. Determining the slope of every Poincaré
section ag &~ const, f1 turns out to be approximately a linear function of aq, fi = f1(0)+ f1'(0) as.
Comparing this result with (5) and fitting f;’(0) to the data, we obtain

28
b3 + 10(1 - [153 + 0.09]@2)(13 + E’l)g =0. (8)

In contrast to (7) no term proportional to v2 occurs, which agrees with parity.
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The time series of a4 and a5 (Figs. 2 and 3) suggest that these modes are driven by the energy
carriers ay and as. Because of parity we expect a% and v% as driving terms for a4 or agaz and vy
for as. Furthermore, there must be terms to facilitate frequency modulation, namely asay4 or azas.
We inspected, therefore, the phase spaces (LDy,a3,v: azay) or (LDs,azas, vavs,azas) that take
5 or even 7 variables into account. Fixing aga4 or agas, all three-dimensional Poincaré sections
showed up as planes. Hence the same procedures as described above can be applied. They yield
differential equations for a4 and as:

4
by + 24(1 —[0.35 £ 0.07]ay )aq + 15{—104 = [8.32 + 0.08]a3 + [1.54 + 0.06] v3 (9)
e
140 88
b5 + ?(1 - [04: + 0.2](12 )a5 + EUS = [321 + 13] asas + [37 + 01] VU3 . (10)

Eqs. (9) and (10) make clear to us why linear theory fails to describe the small amplitude oscillations
of the full mode system. We can see that the damping constants (2/ + 1)(! — 1)/ Re become large
for the higher modes. Hence, after a few oscillation periods the influence of the initial conditions
diminishes for a4 and a5 and these modes reflect the driving forces from a; and a3. In the case of
a4 this force is always positive and oscillates with twice the frequency of ay. Summarizing: linear
damping selects certain nonlinearities that asymptotically dominate the linear terms. Such a mode
locking mechanism has already been described by Haken [12].

Obviously, the empirically derived second order terms can also be calculated by a Taylor series
expansion of mass tensor and surface energy in (21). If we assume the effective nonlinearities to
consist of all second order terms that follow from the Taylor expansion, we receive numerous terms
in each differential equation. We have checked a few of our results by those tedious calculations
(Table 1). The accuracy of the effective terms is satisfactory as they incorporate the influence of
many nonlinearities.

Table 1. The empirically determined coefficients of the non-linear terms in Eqs. (7) and (8)
compared with the corresponding Taylor coeflicients

nonlinearity empirical coefficient Taylor coefficient
—a? 5[(1.36 + 0.04] 5[1.43]
—v3 [0.6 +£0.1] [0.643]
—azas 10[1.53 + 0.09] 10[1.64]

Finally let us test the differential Eqs. (7)—~(10) by considering familiar time series once again.
Figs. ba and b show results of Fig. 2 compared with the predictions of the reduced model. The
modes ay and a3 agree quite well, a4 and as at least qualitatively. In the case of smaller initial
amplitudes (Fig. 5¢) all surface modes are in good agreement.

5. CONCLUDING REMARKS

The proposed method of reducing nonlinear dynamic systems consists of a “flight” through a high
dimensional phase space. One needs to take advantage of software packages for interactive graphical
data manipulation.

The system of ordinary differential Eqs. (7)-(10) describes quantitatively the asymptotic be-
haviour of nonlinear droplet oscillations. If “natural” initial conditions are chosen, the asymptotic
dynamics is already reached in the domain of large amplitudes. Therefore the reduced model can
be used to improve the asymptotic method [13] previously used to measure surface tension with the
oscillating droplet method. Once p, rg and ay(?)...as5(t) are known from experiment, it becomes
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Fig. 5. Comparisons of the reduced model (dashed lines) with the full models M1 or M2 (solid
lines). (a) Initial conditions due to Fig. 2a, compared with model M1. (b) Initial conditions due
to Fig. 2b, compared with model M2. (c) Initial conditions corresponding to the third time

interval of Fig. 11 in [9], compared with model M1
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possible to perform several calculations by modifying the time scale Ty (which means varying the
initial velocities v;) and the Reynolds number Re. Then, least error optimization determines 7y
and Re, i.e. 0 and v (see definitions (2) and (3)). In principle such a procedure is also possible
using the full models M1 and M2 or those of Lundgren and Mansour [7] and Basaran [8]. However,
due to the huge CPU time required it is impractical. On the other hand, the reduced differential
Egs. (7)-(10) can be implemented easily on a small computer, allowing real-time evaluations of
surface tension and viscosity. Moreover, the physical interpretation of the asymptotic dynamics in
terms of frequency modulation and self-organisation becomes evident.

APPENDIX

We limit our interest to axisymmetric oscillations of a viscous droplet described in spherical coor-
dinates (r,6). As a first step the droplet surface is parametrized by (1). Assuming zero vorticity
inside the droplet, the velocity field can be represented by a series of velocity potentials

lo
ﬁz—VZQZ(T,H;ag...alo)m, AP =0, (11)
=2

where in turn each potential ®; is expanded as a series of partial solutions of the Laplace equation

tmax

¢, = Z cii(ay .. .ay) ' Pi(cosf). (12)

=1

The coefficients ¢j; are determined by fitting the kinematic boundary condition (see Becker et al.
(1991, eq.(20))

d
—(R(8,t)—r)=0. 13
(r(0.1)~ 1) (13)
Using (11), the kinetic energy of the droplet can be written as a quadratic form in the generalized
velocities ag...ay,:
1 &
T=3 > Min(ay...ay,) - (14)

{,m=2

The mass tensor Mj,, depends only on the generalized coordinates a;...a;, and is given by

0

My, = g / (®,V®,, + ,,V®))d S (15)

surface

where p denotes the density of the fluid. The potential energy is given by the surface tension o
multiplied by the area of the droplet surface:

V=o / ds. (16)
surface
The dissipation rate of the total energy is generally given by

%(T—l—V):—QpV / (7-V)3) -df - pv / (V x 7)? dr. (17)

surface volume



e

In the approximation of zero vorticity the second integral of (17) vanishes and the first can be
rewritten with the use of (11) in analogy to the kinetic energy

d v .
E(T—I_V) =3 E Qum(ag .. .ay)aan, (18)
l,m=2

with the dissipation tensor given by
Qim = 2p / (V®,-V )V, + (VS -V)Vd }dS. (19)
surface

The equations of motion follow from the Lagrange equations of the second kind

dor-v) or-v)_ 109 d(T+V)

= l=2...1 2
dt da; da; 2 0ay dt ’ 0> ( O)
yielding
lo lo s ; ) lo
10M,,, OM,/\ . . oV v .
My, ., = — — gy — — — — mlm, 1 =2...19. 21

In the coordinate system defined by (1) the centre of mass is not at rest. Its deviation from the
origin O along the symmetry axis is given by

1

lo
s(ag..ay) = %ro / cos 0{ag(az, .., a;,) + E a;Py(cos )} d cos . (22)
-1 =2

Thus, after evaluating the kinematic boundary condition, each velocity potential ®; must be com-
pleted by

0
¢, — &, + 3_51 r cos @ (23)
before the integrals (15) and (19) are computed.
It can be shown that linearization of (21) leads to the set of simple differential equations

i +wia +28a =0, 1=2...1 (24)
with the frequencies and damping constants

W= Zl-1)1+2), &=+ 1)1-1), (25)
PTy o

well known from the analysis of Rayleigh [2] and Lamb [3].
The equation system (21) can easily be solved numerically by standard methods. The compu-
tational results presented in Sections 3 and 4 were generated with lp = 6 and %,,,, = 8.
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