Laboratory benchmarks for validating numerical simulation of casting problems

Tomasz A. Kowalewski
IPPT PAN
Analysis of casting system

Real System → Simplified Mathematical model → Physical model

Experiment → Verification → Simplified experiment

Validation → Process engineer
Why we need experimental validation?

Numerical simulation simplifications due to:

- Limits of discretization accuracy
- Equations (Navier-Stokes) non-linearity
- Strongly non-linear moving boundary problem
- Variable physical properties of fluid/solid phases
- Complex thermal boundary conditions
- Mushy regions, chimneys, solutal convection
- Wide disparity of physical scales
- Sensitivity to boundary/initial conditions
Numerical code certification

- Numerical model verification
- Numerical model validation

→

- Physical model verification
- Numerical model verification
- Experimental validation
Physical model verification

Define physical model of the simulated phenomena

• Verify importance of the details
• Extract crucial parameters
• Similarity analysis
• Construct physical model adequate to the simulated industrial configuration
• Identify possible sources of discrepancies
Numerical model verification

Are we properly solving equations?

• Verification of model mathematics
• Verification of discretization (grid convergence test)
• Inter-code comparison
• Numerical benchmark comparison
Numerical method
Basic set of equations

Continuity equation:
\[\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \vec{U}) = 0 \]

Momentum equation:
\[\frac{\partial \rho \vec{U}}{\partial t} + \nabla \cdot \rho \vec{U} \otimes \vec{U} = -\nabla p + \nabla \cdot \left(\mu \nabla \vec{U} + \mu (\nabla \vec{U})^T \right) + \vec{B} \]
\[\vec{B} = \rho_0 \left[-\beta_r (T - T_0) + \beta_c (C - C_0) \right] \vec{g} \]

Energy equation:
\[\frac{\partial \rho h}{\partial t} + \nabla \cdot (\rho \vec{U} h) - \nabla \cdot (\lambda \nabla T) = 0 \]

Concentration equation:
\[\frac{\partial \rho C}{\partial t} + \nabla \cdot (\rho \vec{U} C) = \nabla \cdot (\rho D \nabla C) \]
Numerical method selection 1

1. Interface tracking method - academic
2. Fixed grid method (most commercial codes)

Both methods solve the same problem:
• Navier-Stokes Equations for mass transport
• Energy equation for heat transport, including phase change latent heat

Interface tracking method in addition resolves dynamics of the solid-liquid interface
Numerical method selection 2

1. Finite Difference – mostly academic
2. Finite Volume – more flexible geometry
3. Finite Element – most commercial codes
4. Other: Boundary Element, Mesh-Free

All methods solve the same problem:
- Navier-Stokes Equations for mass transport
- Energy equation for heat transport, including phase change latent heat
Verification of numerical model

1. Grid convergence test – discretization errors
2. Conceptual errors – like non-ordered approximations
3. Computer round-off errors
4. Programming errors

Compare with known solutions – numerical benchmarks
Numerical benchmark

CALCULATE: SOLUTION & SOLUTION UNCERTAINTY

Error indicator for code comparisons

$$\varepsilon(f) = \frac{1}{N} \sum_{i=1}^{N} (f(x_i) - w(x_i))^2$$
Numerical benchmark

GRID TEST FOR DIFFERENT SOLVERS

\[\Delta y = \frac{1}{N} \]

\[\mathcal{E}(f) = \frac{1}{N} \sum_{i=1}^{N} (f(x_i) - w(x_i))^2 \]
Numerical model validation

Are we solving proper equations?

• Verification of physical model used
• Verification of boundary/initial conditions
• Verification of material properties
• Definition of reliable experimental test
• Validation (comparison) with experimental data
Selection of the test problem

Possible choice:

• Industrial full scale configuration
 – Complex geometry, inaccurate boundary / initial conditions & material properties, difficult experimental methodology

• Industrial laboratory model
 – Well controllable environment, inaccurate properties, difficult experimental methodology

• Analogue laboratory model
 – Full experimental control
Industrial configuration

Industrial configurations are very difficult to investigate experimentally

B. Saler, AMAS 2003
Industrial configuration

Limitations - measurements of:

- interface topology ▶ difficult for non-transparent materials
- velocity field ▶ very limited for non-transparent materials
- temperature ▶ surface only for non-transparent materials
- concentration ▶ difficult in general
- thermal BC ▶ usually possible for external walls only
- initial conditions ▶ special arrangement necessary
Industrial laboratory model

Mould filling benchmark test proposed at 7th conference on modelling casting and welding processes (Sirrell et al. 1995).

Despite of expensive and complicated experimental procedure -> delivered data appeared not sufficient for validating submitted numerical solutions
Analogue laboratory model

Temperature

Velocity

283K

318K

283K
Analogue laboratory model

OPTICAL METHODS

- PIT: colours → temperatures
- PIV: vectors → velocities

Advantages — full field flow, temperature and concentration data collection, well known material properties, fully controllable experimental conditions

Limitations — transparent analogue materials, simple cavity shapes, radiation neglected, Prandtl number > 1,
Analogue laboratory model
Mould filling phase

experiment

numerical simulation

Full field transient data can be quantitatively compared
Analogue laboratory model
Mould cooling phase

experiment numerical simulation

Full field transient data can be quantitatively compared
Analogue laboratory model
„Hot spots” identification

Experiment - temperature

Experiment - velocity

Full field transient data can be used to detect local features
Experimental benchmark using analogue fluid

Numerical model can be validated using laboratory data

Optical methods make possible

✓ 3D measurements of velocity, temperature and concentration

✓ Validation of fluid mechanics, thermodynamics, phase change and micro-structure

Full field velocity, temperature, concentration data together with shape, interface dynamics
Experimental benchmark

Typical analogue fluids

<table>
<thead>
<tr>
<th>Property</th>
<th>Water</th>
<th>SCN</th>
<th>PEG 900</th>
<th>Hexadecane</th>
</tr>
</thead>
<tbody>
<tr>
<td>density, ρ [(kg m$^{-3}$)]</td>
<td>999</td>
<td>985</td>
<td>1100</td>
<td>792</td>
</tr>
<tr>
<td>Specific heat, c [J kg$^{-1}$ K$^{-1}$]</td>
<td>4217.8</td>
<td>2000</td>
<td>2260</td>
<td>2236</td>
</tr>
<tr>
<td>thermal cond., k [W m$^{-1}$K$^{-1}$]</td>
<td>0.552</td>
<td>0.223</td>
<td>0.188</td>
<td>0.18</td>
</tr>
<tr>
<td>thermal expansion, β [K$^{-1}$]</td>
<td>$-0.07 \cdot 10^{-3}$</td>
<td>$0.81 \cdot 10^{-3}$</td>
<td>$0.76 \cdot 10^{-3}$</td>
<td>$0.9 \cdot 10^{-3}$</td>
</tr>
<tr>
<td>melting temperature, [°C]</td>
<td>0</td>
<td>55</td>
<td>34</td>
<td>18</td>
</tr>
<tr>
<td>kinematic viscosity, ν [m2 s$^{-1}$]</td>
<td>$1.8 \cdot 10^{-6}$</td>
<td>$2.6 \cdot 10^{-6}$</td>
<td>$9.0 \cdot 10^{-6}$</td>
<td>$3 \cdot 10^{-6}$</td>
</tr>
<tr>
<td>Prandtl number, Pr</td>
<td>13</td>
<td>23</td>
<td>1188</td>
<td>45</td>
</tr>
</tbody>
</table>
Example benchmark

Freezing of water. Velocity, temperature and ice front observed in centre plane of the differentially heated cavity. $T_h = 10^\circ C$, $T_c = -10^\circ C$
Example benchmark

Differentially Heated Cavity

Temperature, velocity fields, and interface geometry (t) from experiment
Example benchmark

Differentially Heated Cavity

Temperature, velocity fields, and interface geometry (t) from simulation
Example benchmark

Mould filling with freezing water

Temperature, velocity fields, and interface geometry (t) from experiment
Example benchmark

Mould filling with freezing water

Testing casting code 1
Example benchmark

Mould filling with freezing water
Example benchmark

Mould filling with freezing water

Casting Code 1 vs. casting Code 2
Example benchmark

Mould filling with freezing water

Fluent 6.0
Example benchmark

Mould filling with freezing water

Fluent 6.0
Example benchmark

Mould filling with freezing water

Interface position predicted and measured
Example benchmark

Mould filling with freezing water

Water freezing after filling: ice front measured and compared with numerical prediction Fluent).
Validation Methodology

- Select experimental configuration
- Define characteristic parameters of the problem
- Estimate experimental error for each parameter
- Estimate sensitivity of the problem to these errors
- Perform validation procedure using knowledge gain from the experiment (data, accuracy) and from numerical simulations (sensitivity)
Validation Methodology

• Validation error E is defined as difference between the experimental Data D and the value produced by the simulation S

\[|E| = D - S \]

• Validation uncertainty, sum of Data, Simulation, and Material uncertainties

\[U_V = \left(U_D^2 + U_{SN}^2 + U_{SPD}^2 \right)^{0.5} \]

• Validation Error E has to be smaller than uncertainty U

\[|E| \leq U_V = \left(U_D^2 + U_{SN}^2 + U_{SPD}^2 \right)^{0.5} \]
Summary

• To understanding differences between numerical and experimental data
 ⇒ necessary to compare full field data

• Detailed experimental data for analogue fluids, select critical set
 ⇒ available quantitative, full-field information about the temperature and velocity fields
 ⇒ estimate necessary accuracy to use the data for the validation

• Perform sensitivity test and validation

• Validation using analogue fluids
 ⇒ necessary condition but not sufficient
Literature

for more please visit: http://www.ippt.gov.pl/~tkowale/
Acknowledgments

The author has been fortunate to share part of this work with his colleagues and students from the Max-Planck-Institut, New South Wales University, La Sapienza, and at his home institution. In particular I would like to acknowledge the contribution of

W. Hiller
St. Koch
G. de Vahl Davis
E. Leonardi
F. Stella
M. Gangi
A. Cybulski
M. Rebow
T. Michalek
M. Kowalczyk

to what has been a team effort over a number of years.