
 XXI ICTAM, 15-21 August 2004, Warsaw, Poland 

NUMERICAL ANALYSIS OF STRAIN HARDENING AND PRESSURE 
 SENSITIVITY EFFECTS ON J-INTEGRAL 

 
 A. Al-Abduljabbar 
 Riyadh College of Technology, Riyadh, Saudi Arabia 
  
Summary  J-integral is investigated for compact tension specimen for a strain-hardening pressure-sensitive material. Alower-bound plastic 
limit-load analysis is used with linear hardening assumed for the material. Pressure sensitivity, is accounted for by using the Drucker-Prager 
yield criterion. FE analysis was conduted using ABAQUS, with strain hardening modelled for typical hardening materials.  Numerical and  
theoretical results are compared; J increases with increasing strain hardening and decreasing pressure sensitivity. 
 

INTRODUCTION 
While linear elastic fracture mechanics (LEFM) theory is utilized for estimation of fracture behaviour of materials in the 
elastic range, it is not adequate for large scale inelastic behaviour is encountered.  To characterize the elastic-plastic 
fracture behaviour, Rice [1, 2] introduced the path-independent J-Integral around the tip of fracture notch.  Considering 
a rigid perfectly-plastic material, Merkle and Corten [3] presented J estimation for compact tension specimens using a 
limit load analysis by considering the effects of the combined loading of axial force and bending moment applied to the 
remaining ligament of the specimens.  Recently, Al-Abduljabbar and Pan [4] considered the effect of pressure 
sensitivity on the evaluated values of η and J for compact tension specimens with the same assumption of rigid 
perfectly-plastic material behaviour.  Using finite element analysis, Kirk and Dodds [5] considered different equations 
used for estimating the η-factor, and highlighted the η dependency on strain hardening, which is not taken into account 
in the relevant standard (ASTM E 1290).  In this work, we derive analytical expressions for factors of the J-Integral for 
a material with strain hardening by assuming a simple linear hardening model for the material.  Moreover FE analysis is 
used to model the specimen with pressure sensitivity is accounted for by using the Drucker-Prager yield criterion for 
solid materials.  The strain hardening behaviour is modelled for typical hardening materials as well as that of the 
simplified model using linear hardening curve which was used in the theoretical work.  The effect of different hardening 
behaviours is also considered.  
 

PLASTIC LIMIT ANALYSIS 
Effects of the axial force and the bending moment acting on the upper half of the compact tension specimen are 
analysed by the use of a lower-bound approach whereby a single parameter can be identified to express the effect of the 
axial force.  First, the material hardening behaviour is expressed according to Ludwik's expression, 

     nHεσσ += 0 ,     (1) 
where H and n are the hardening constants.  Consider a compact tension specimen of perfectly plastic material as shown 
in Figure 1, loaded up to fully-plastic limit load P0.  Stress distribution in remaining ligament of the specimen is 
assumed as shown. The dimensionless parameter, α, is used as an indicator of the deviation of stress reversal point from 
the centre of the remaining ligament b.  Another parameter, β, is used to account for the hardening effect.  The slope of 
the linear hardening curve on the stress diagram is β σ0 / c, and stresses σA and σB are determined as 

    0)]1(1[ σαβσ −+=A ;     (2) 

    0)]1(1[ σαβσ ++=B .        (3) 
The force and moment balance around stress reversal point are enforced, from which an expression for α is obtained: 
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An expression for the J-Integral is determined by namely two parts: the real work and complimentary work done on the 
specimen due to the applied load, as follows,   
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where θ is the angle of rotation defined from the relation between applied displacement ∆ and crack-tip opening 
displacement δ. The coefficients of the first and second terms in Equation (5) are assigned to η and η∗ respectively.  
From the relations of α to geometry and J definition, the parameter η is derived as  
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where φ =1+2 β /3.  For perfectly-plastic materials, β=0; so Eq. (7) reduces to perfectly-plastic material solution.   
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Discussion 
The finite element code ABAQUS is used to model the 
specimen of a pressure-sensitive strain-hardening 
material.  Pressure sensitivity is modeled by using the 
Drucker-Prager yield criterion wherein the generalized 
equivalent stress is represented as a combination of the 
equivalent stress and the hydrostatic stress by the means 
of a pressure sensitivity factor. Strain hardening 
behavior is modeled for typical hardening materials as 
well as that of the simplified model using linear 
hardening curve which was used in the theoretical work. 
Plain-strain reduced-integration elements CPER8 are 
used for the model. The specimen dimensions are 
according to standard test specimen dimensions from 
ASTM E 1290. Consider the change of η with respect to 
the strain-hardening coefficient β for different cases of 
normalized crack length as depicted in Figure 2.        It  
shows  that for  specimens with  shallow  cracks,  an    Figure1: CT specimen and stress distribution in remaining portion. 
increase in the hardening factor β results in considerable  
change in η.   

 
Figure2: η factor as a function of hardening coefficient β.        Figure3: η as a function of normalized crack length a/W. 

 
Figure 3 shows the η factor as a function of the normalized crack length a/W. We can see from the plot that the effect of 
hardening decreases as the crack gets deeper and η converges to the value of 2 because for deeply cracked specimens, η 
approaches 2 regardless of the material constitutive behavior [6].   

 
CONCLUSION 

Results obtained from numerical and theoretical work show that as the material strain hardening increases, the J-Integral 
increases especially at low values of crack length.  The effect of pressure sensitivity, on the other hand, tends to reduce 
the value of J.  These results are relevant to ductile hardening solids with pressure-sensitive yielding such as nodular 
and malleable cast irons and even some steels. The forgoing analysis permits an improved estimation of the fracture 
parameter η for a material with strain hardening over the results reported for rigid perfectly plastic materials.  Since 
most metals exhibit strain-hardening behavior, it is most suited to investigate the change in the fracture parameters due 
to the material hardening under further loading beyond the yield limit. 
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