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Summary The methods of solutions to three-dimensional stationary thermoelastic problems involving a two-layered microperiodic
space containing an interface crack of arbitrary smooth profile. An approximate analysis is performed within the framework of linear
stationary thermoelasticity with microlocal parameters. The resulting boundary-value problems are reduced to the corresponding
ordinary crack problems with mechanical loading in homogeneous isothermal elasticity.

INTRODUCTION

The rapidly increasing use of new composite materials with a large number of dissimilar layers in advanced engineering
structures requires the study of different aspects of their fracture behavior. A great deal attention has been drawn to
interfacial cracking. It is well known that many conventional solutions for interfacial cracks have oscillatory
singularities, which causes the overlapping of crack faces. To eliminate these unsatisfactory features, several interfacial
zone models have been proposed and discussed (see e.g. a review in [1]).

In this paper, an approximate theory called the linear stationary thermoelasticity with microlocal parameters, devised in
[2,3], is used to analyze three-dimensional problems with a crack of arbitrary shape lying on an interface in a periodic
two-layered elastic space. The advantage of this approach is a relatively simple form of the governing equations
appearing similar to the thermoelasticity for transverse isotropy, which makes it possible to construct the appropriate
potentials and establish an analogy between the thermal crack problems and their mechanical counterparts. Thus, the
typical inverse square root crack-border stress singularities, characterized by the stress intensity factors, are obtained.

PROBLEM FORMULATION AND GOVERNING RELATIONS
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Positive constants appearing in the above equations, describing material and geometrical characteristics of the
composite constituents are given in the sited paper [4]. Observe that the condition of a perfect bond between the layers
is satisfied, and setting u, =p,=p, A, =4, =41 and B, =0,=0, k=k,=k we get ¢, =c,=A+2u,
c,=Cy=A, c,=n, K =K,=8, K=k, k, =1, passing directly to the well-known equations of stationary
thermoelasticity for a homogeneous isotropic body.

The solution of the governing equations (2) is dependent on the material constants of the sublayers. In the general case
W # Uy, ty # ko (the other cases are detailed in [4]; all constants appearing are given in [4]) it is expressed in terms of
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SOLUTIONS TO THERMALLY LOADED INTERFACE CRACKS

Of interest are two general problems (symmetric, denoted by 1 and skew-symmetric, denoted by 2) related to the half-
plane x3 >0 when the boundary plane x3 =0 is subjected to the following general thermal-stress conditions:

Problem I 9(x1,x2,0+) =Ty (x.32), (¥x2) €S Problem 2: 9.3 (x,%,,0") :7W, (x.x) €S,
973(x1,x2,0+)= 0, (x,x)eZ-S, 9(x1,x2,0+) 0, (x,x)eZ-S,
031(xl,x2,0+)=cr32(x1,x2,0+)=0, (x.%,)€Z, 633(x1,x2,0+):0, (x,%,) e Z,

o33 (11,1,07) =0, (x,%,)es, 031 (552,07 ) = 033 (21,2,07) =0, (,m2) €S,
w3(x1,x2,0+)=0, (x.x2) e Z=S, w (x5,52,07) = s (39,22,0%) = 0, (x,:) €25,

where Z denotes the entire x x, -plane. In addition, the usual requirements at infinity, namely, vanishing of the
temperature and displacements in Problem 1 and heat fluxes and stresses in Problem 2 are assumed.

It is shown how these problems are reduced to the classical mixed problems of potential theory. A general formulation
in terms of singular two-dimensional integral and integro-differential equations is also presented.

Problem 1 is reduced to the mechanical counterpart in isothermal elasticity, involving the crack § under symmetrical
normal loading (Mode I of crack deformation). It should be mentioned here that this problem does not require the
evaluation of the temperature distribution 3 .

Problem 2 (more involved) is reduced to its mechanical skew-symmetrical problem (Mode II and III of crack
deformation).

It follows that the thermoelastic fields and stress intensity factors of the problems under consideration can be obtained
from their mechanical counterparts provided that the corresponding solutions for the isotropic elastic materials are
available.

Paper [5] demonstrates how to implement this method for the solution to the problem of an interface insulated plane
crack obstructing a uniform heat flux in a two-layered microperiodic space.
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