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 Summary A boundary element method using Laplace transform in time domain is developed for the analysis of fracture mechanic 
considering transient coupled thermoelasticity problems with relaxation times in two dimensional finite domain. The dynamic 
thermoelastic model of Lord and Shulman are selected for showing finite thermal propagation speed. Thermal dynamic stress 
intensity factor for mode I is evaluated using different relaxation times. 
  
 

Introduction 
 

The classical theory of thermoelasticity assumes that the thermal disturbances propagate at infinite speeds. This 
prediction is a physically unacceptable situation. There is a class of problems dealing with impingement of a high 
intensity energy source on the surface of a structure that needs special consideration of the thermal wave model. The 
wave model in the heat transport process becomes even more important if some irreversibles physical processes, such as 
crack or void initiation and propagation in the solid, occur in the radiant duration. In these cases the orientation of crack 
initiation or crack propagation, for example, must be predicted according to the thermal wave model. In the classical 
study of thermoelastic crack problems, the theoretical solutions are available only for very few problems in which 
cracks are contained in infinite media under special thermal loading conditions. For example Lee and Sim [1] solved the 
problem of a surface cracked infinite strip under sudden conductive cooling and evaluated the mode-I thermal shock 
stress intensity factor (TSSIF) using Bueckner's weight function method. Katsareas et al. [2] used a boundary-only 
element method to compute shock stress intensity factors for a surface cracked infinite strip and a finite edge cracked 
plate. They considered uncoupled quasi-static thermoelasticity. Recently Hosseini-Tehrani et al. [3] present a boundary 
element formulation for the dynamic crack analysis Consider coupled theory of thermoelasticity. This paper presents a 
boundary element formulation for the crack analysis Considering the LS theory of thermoelasticity. In this work the 
body is exposed to a thermal shock on its boundary and the resulting thermal stress waves are investigated through the 
coupled thermoelastic equations. The discretized forms of the equations are obtained by the approximation of boundary 
variations by quadratic elements. 
 

GOVERNING EQUATIONS 
 
A homogeneous isotropic thermoelastic solid is considered. In the absence of body forces and heat generation, the 
governing equations for the dynamic coupled generalized thermoelasticity in time domain based on the LS theory are 
written as          
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where a dot indicates time differentiation and the subscript i after a comma refers to partial differentiation with respect 
to xi (i=1,2), and λ, µ, ui, ρ, T, T0, k, , ceee , and t0  are Lame's constant, the components of  displacement vector, mass 
density, absolute temperature, reference temperature, thermal conductivity, stress-temperature modulus,  specific heat at 
constant strain and, relaxation time proposed by LS theory respectively. Equations (1) can be rewritten in matrix from 
as 
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In order to drive the boundary integral problem, weak formulation of the differential equation set (2) for the 
fundamental solution tensor *

ikV  may be used 
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The detail mathematical formulations may be found in Hosseini-Tehrani et al. [3]. The stress intensity factor may be 
determined either from nodal traction or from the crack opening displacement (COD). To evaluate KI, the quarter point 
singular element at the crack tip is used. If vB at r=l/4 is considered  ( l is the length of the singular element at the crack 
tip) KI, may computed as  
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RESULTS AND DISCUSSION 

 
Structures covered with coatings and lining may be subjected to sever loading conditions. The load might be applied in 
the form of mechanical and/or thermal shocks. If the period of shock duration is small enough compared to the first 
natural frequency, then the dynamic thermoelasticity may be important. Considering an infinite strip shown in Fig. (1), 



initially subjected to a uniform temperature T0 with an edge crack perpendicular to its top surface. The strip is rapidly 
cooled by conduction at its upper surface x2=0, whereas the bottom surface x2=W is insulated. This is a mode I crack 
opening problem. The crack edges assumed to be thermally insulated. Due to the symmetry about the x2 axis, only half 
of the strip is discretized. The boundary element model is presented in Figure 1(b), for a crack depth of a*=0.05 and 
L/W=1, where a*=a /W. *

IK  is defined as the dimensionless TDSIF, which for plain strain condition is 
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* TTWEvKK II −−= Where t*=Kt/(ρceW2) is the dimensionless time known as Fourier number. Validation of 

this method is shown in [3] for classical theory.  
Figure (2) shows crack intensity factor variation versus dimensionless time t*, while t*=1 means 9.3E-12 sec. In Fig. 2 
comparison between conventional uncoupled and LS theory is done. In this figure curves are plotted for three different 
conditions. C=0 represent conventional uncoupled theory of thermoelasticity, in this case *

IK  is increased 
instantaneously after the application of the sudden cooling. At time t*=0.002, the thermoelastic wave stress reaches the 
tip of the crack. This cold shock produces tensile stress in the x2-direction and due to the effect of the Poisson's ratio, 
compressive stress is produced in the x1-direction. This phenomena results into crack opening and thus *

IK  increases by 
time, as shown in Fig. (2). When t0 = 0.64, the speed of propagation of the thermal wave is Ct=1.25 and the speed of the 
propagation of the stress wave is Cs=1 (dimensionless). In this condition at t*= 0.00175 when cold wave reaches to the 
crack tip, crack opening begins. At t*=0.002 when stress wave reaches to crack tip *

IK  variation takes place. For 
t0=1.5625 the speed of propagation of thermal wave is Ct=0.8 and the speed of propagation of the stress wave is Cs=1 
(dimensionless). In this condition at t*= 0.0025 when cold wave reaches to the crack tip, crack opening begin, but stress 
wave that was already reached to crack tip has a decreasing effect on *

IK . 
 

CONCLUSIONS 
 

A boundary element method and Laplace transform in time domain are developed for the analysis of fractured planar 
bodies subjected to thermal shock type loads. The important results of this study are: The appropriate time scale in 
which the effect of inertia term is observed is considered and the importance of inertia term is shown. In conventional 
theory of thermoelasticity, *

IK  has risen instantaneously after applying cold shock but in LS theory *
IK  rises when 

temperature or stress wave reaches to crack tip.  The fracture analysis due to thermal shock using LS theory of 
thermoelasticity shows more fluctuation on *

IK  ’s curve versus time.  
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Fig. 1 (a) Cracked strip initially at T0    under sudden                  Fig. 2 Variation of the dimensionless thermal dynamic 
cooling  Te , (b) boundary Condition.                                          stress intensity factor versus dimensionless time 
.                                                                                                           for uncoupled and LS models. 
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