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Summary The authors present the results of fatigue investigations into the primary structure of composite glider undertaken at the
Institute of Aeronautics and Applied Mechanics (IAAM) of WUT. The specimens representing the main joints of wings and fuselage,
as well as the wing spar root were tested, since they form a most representative part of the glider primary structure. The integral
fatigue tests of the wings-fuselage system were finally performed.

Introduction
Composite materials are primary candidates in the construction of the next generations of advanced aeronautical and
aerospace vehicles. The design for primary and secondary structure of modern gliders will rely on FRPs to meet the
structural weight criteria. Due to the economic and safety criteria, the structure of them must be durable over an
expected life time at environmental conditions. From the survey of literature plenty of results are published in the field
of fatigue of composite (e.g. recently published [1 ÷ 5]) and new smart [6] materials [7].
For several years the education and design program of light composite gliders has been developed at the IAAM,
bringing about the “PW” family of six manufactured and tested glider prototypes, together with the widely known PW5
“Smyk” – the winner of FAI international technical competition for a new mono-type class - called the World Class
glider. One of the main aims of the investigations undertaken after making successful tests of the PW-5 consisted in
proving that its operation life was 9 000 hours, which was the level required for the World Class Glider. The
investigations were conducted in the following three stages:  1st - fatigue tests of the main wing-fuselage joints, 2nd –
fatigue tests of the root part of wing spar, and 3rd – integral fatigue tests of the wings-fuselage system. Before making
the fatigue tests - the estimation the glider load spectrum was performed by means of calculations and in-flight load
recording.

Fatigue tests of the main wings-fuselage joints
A special type of joints has been employed in the PW-5 and the following PW-gliders for the wings-fuselage fitting [8].
The work principle of such a joint consists in the introduction of a concentrated force into a composite multi-layer
glass-epoxy (GFRP) shell by means of special metal sleeves and pins. The joints are located in the main fuselage frame
and in the wing spars shear webs. The main feature revealed by those joints is the lack of adhesive connections between
the metal parts of joints and composite shells, respectively, (i.e. the joint with a labyrinth fastener, patented under: PL
146658). These joints (Fig. 1a) have been tested in a low-cycle fatigue mode. The program of investigations comprises
the following phases (Fig. 1b)  a/ static tests of fresh - not-fatigued specimens (specimens No: K02, K04), b/ constant-
amplitude cycle fatigue tests (specimens K03, K05, K06), c/ increasing amplitude cycle tests  (specimens K08, K09),
d/ residual strength tests (after 10 000 cycles). In the aforementioned cases the load lower limit was the force
corresponding to n = 1, where n is a load factor (a multiplier of g = 9.81 m/sec –2). The maximum load expected in
glider service was exactly the same as in the case of specimen K03.
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hysteresis loops). Taking a general approach this process can be represented by a three-parameters phenomenological
model [8, 9]. The bond-graphs and the results of numerical simulation of the specimen behaviour are shown in Fig.2b.
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