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Summary. We study the problem of normal impact of a rigid sphere on a circular elastic plate whose thickness is not so small with respect 
to its diameter, so the Kirchhoff’s theory cannot be applied. For plate-like bodies of this kind it is convenient to apply a theory proposed 
by Levinson (1985). To describe mathematically the pressure distribution and the extent of the contact area we adopt the Hertz’s theory. 
By combining these theories we derive an impact law in elastic plate-like bodies. 

 
In this paper we analyze the low velocity impact problem of a rigid sphere against a circular elastic plate. The solution 

of the equations of the three dimensional  theory of the elastodynamic is obtained by using a semi-inverse method  and a 
solving technique based on the method of the separation of variables [1]. 

We consider a circular isotropic plate-like body of thickness 2h and radius b referred to a system of cylindrical 
coordinates such that its origin is placed at the center of the middle plane. We extent the Levinson’s problem in a 
dynamical framework with axisymmetric load conditions; the displacement field assumes the following form  
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where the function W(r) is the deflection of the middle surface, and g(z)  and f(z) are functions determining the variations 
in the displacements through the thickness of the plate [2]. 
We assume respectively the following conditions over the mantle and on the upper and lower faces  
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For the explicit expression of the function p(r,t) we adopt the periodic Hertz’s normal pressure distribution  
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where a is the contact area radius, R the radium of the rigid sphere and P the resultant pressure [3]. 
The pressure p(r)  is written as a Fourier  Bessel expansion on the interval (0,b)  
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Z  are the j-th zeros of the 0-order Bessel function of the first type. By substituting the 

displacement field in the linear elastodynamic equations for isotropic material, we obtain  
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(5)

with  r the density  and land m the  Lamé  moduli.  
The function W(r)  can be written as  

0 0( ) ( ) ( )W r BJ kr DY kr= +  ,  

where  
0 ( )J kr  and 

0 ( )Y kr  are the 0-order Bessel functions of the first and second type respectively; since the second 

type Bessel function is unbounded in r=0, the coefficient D is zero. The condition on the mantle yields that k   is 
j

φ  

(j=1,2..), so we obtain the explicit solution of the  (5), in the j-th term, as [4] 
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Now, by substituting the (6) in the (4) and, by differentiating it with respect to z, we get the solutions of the function 
f(z) and g(z)  in the form  
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The coefficients ( ) ( ) ( ) ( )
1 2 3 4, ,  and  j j j jC C C C  are uniquely determined by the conditions on the upper and lower faces of 

the body.  
The displacement field is obtained by considering the sum on all value of j, so we have the following expansions 
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     By using (9) in z=+h and r=0 we have the impact law in a circular thick elastic plate in the form 
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In the static case we have the following contact law  
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By using the analytical solution (10), in fig. 1 we show the impact law in the case of  low frequencies for different 
ratios h/b. As expected, we remark the agreement with the hertzian law (dHertz ) for high values of the ratio h/b. 

 

 
Fig. 1. Impact law for different ratios  h/b. 
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