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Summary This paper deals with an analytical solution of the boundary-value problem of plane elasticity for a truncated infinite wedge
of an arbitrary opening angle 2α. The flanks of the wedge are free of traction. Its circular boundary is subjected to torsional load
due to the given tangential displacements or the moment-replacement loading prescribed. The main goal of the paper is to verify
whether the Carothers paradox is actual when the statement of the Carothers problem is modified and more rigorous. Two powerful
methods, viz. the method of superposition and the method of homogeneous solutions, are introduced and compared. By means of them
the boundary-value problem amounts to solving an infinite integro-algebraic system of equations and an infinite system of algebraic
equations, respectively. Our numerical simulations with these systems provide graphical results. The distributions of stresses in some
principal cases are presented. Numerical results turn out to be in a complete agreement with results by Neuber [1].

SHORT REFERENCES AND STATEMENT OF THE PROBLEM

A plane elastostatic problem for an elastic wedge loaded by a concentrated moment at its apex provides an example of
violation of the Saint-Venant principle when the apex angle 2α of the wedge is over than the half-plane. This circumstance
is due to Sternberg and Koiter [2]. They examined the non-degenerate modified problem, in which the couple is replaced
by a statically equivalent continuous load distributed on the flanks close by the apex. As distinct from Sternberg and
Koiter, Neuber [1] considered the problem for a truncated wedge. He showed the method of construction of an applicable
solution for any apex angles in the range π ≤ 2α ≤ 2π despite the failure of the Saint-Venant principle. By all means
further advancement in explanation of the Carothers paradox is possible provided that the wedge problem is modified in
a certain manner and rigorously formulated (see Markenscoff [3]).
Therefore, this paper addresses two modified wedge problems. In the both cases we consider the truncated elastic wedge
occupying the domain ε ≤ r < ∞, −α ≤ ϑ ≤ α in the polar coordinates system (r, ϑ) with free surfaces ϑ = ±α (see
Figure 1 and conditions (1)).

α

ϑ

ϑM(r,  )

y

x

Figure 1. Truncated elastic wedge.

σϑ = 0, τrϑ = 0, ε ≤ r < ∞, ϑ = ±α. (1)

The difference lies in the boundary conditions on the circular surface.

Bonded contact with a rigid shaft (mixed problem)
Let us suppose that the truncated elastic wedge is bonded to a rigid shaft (cylinder) of radius ε (see Figure 1). The shaft
is rigidly joined with the wedge across the contact zone r = ε, −α ≤ ϑ ≤ α. A torsional moment M0 is acting on the
shaft which as consequence has rotated through a certain angle ϕ0 counterclockwise. Therefore, the displacements in the
contact zone are prescribed as

uϑ = ε · ϕ0, ur = 0, r = ε, −α ≤ ϑ ≤ α, (2)

As usually, the displacements are assumed vanishing at infinity r → ∞.
This problem is natural in its technical aspect, and it agrees with the approach by Neuber [1]. The solution of the problem
will be a function of the angle ϕ0, and there is an one-to-one correspondence between ϕ0 and the torsional moment M0.
Therefore, full qualitative agreement with Neuber [1] is expected.
On the other hand, if the Carothers paradox is actual then for the given ϕ0 the moment M0 transferred from the shaft to
the truncated wedge is not a monotonous increasing function of the angular coordinate α. This matter is found out when
solving the problem.



Moment-replacement loading
In contrast to Sternberg and Koiter [2], the replacement loading is applied on the surface r = ε. The normal σr and
tangential τrϑ stresses are specified so that the resultant force of external tractions vanishes. Specifically, they are given
as σr = −Xn · cosϑ, τrϑ = Xn · sin ϑ, where Xn is a given odd function. By replacing Xn with its Fourier series, the
boundary conditions at r = ε are written as

σr = cos ϑ
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, τrϑ = − sin ϑ
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, r = ε, −α ≤ ϑ ≤ α. (3)

METHOD OF SOLUTION

The method of homogeneous solutions (see [4]) and the method of superposition (see [5]) are employed. They, respec-
tively, allow to transform the boundary-value problem to an infinite system of algebraic equations and to an infinite
integro-algebraic system of equations.
It is more convenient to apply the method of homogeneous solutions if the opening angle of the wedge 2α equals π or 2π.
The last is important particular case when the truncated wedge degenerates into an elastic plane with a semi-infinite slit
(see [6]). If 2α differs from π or 2π roots of characteristic equations are complex. In this connection natural difficulties
were overcome.

RESULTS

Proceeding from the method of homogeneous solutions the mixed problem has been reduced to solving a singular infinite
system of linear algebraic equations that can be brought to a regular form. An asymptotic analysis of singular system’s
equations and a regular system’s solution has been carried out. On the basis of a numerical solution of the regular infinite
system normal σr and shearing τrϑ stresses are plotted as a function of the angular coordinate ϑ on a joint area between
the elastic wedge and the rigid shaft. Finally, the graphs display somewhat unexpected results: these relations are found
in a complete qualitative agreement with Neuber’s deductions (see Figure 2).
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Figure 2. Stress distribution along the force transfer surface calculated for α = π: (a) dashed and solid lines represent normal and
shearing stresses respectively; (b) shearing stress scaled down; (c) according to Neuber [1].

As in a number of other problems, including bonded contact between elastic bodies and rigid boundaries, there is a certain
inconsistency in the shear-stress behavior at the location r = ε, ϑ = ±α. This character of the stress field is inevitable.
Therefore, the points r = ε, ϑ = ±α are treated as singular, in which characteristics of the stress field are uncertain and
fundamentally different in their close proximity.
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