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Summary A problem on the stressed state of an elastic medium with a spherical inclusion with a crack at the interface boundary is
solved by exact methods of the linear theory of elasticity. At first the problem is reduced to an interrelated system of coupled integral
equations with respect to the Legendre functions, and then to a system of singular integral equations with respect to two unknown
functions. The behaviour of the equation solutions is studied near the interface circle of a spherical section. The case is examined when
the cross-section surfaces are under normal internal pressure of constant intensity.

INTRODUCTION

As is well known in most cases the catastrophic destruction of constructions is caused by some hidden internal defects.
The internal cracks, in the form of material solidity breaks have been examined by scientific literature for quite a long
time. The problems on stress-strained state of elastic finite and infinite bodies with flat cracks of disk-shaped or elliptic
forms, are among the best researched ones. More than a hundred publications deal with this issue. However, according
to experimental analysis of the surfaces of damaged parts, the initial surfaces of the material breaks were of spherical or
ellipsoidal shape, that is they were volumetrical, not flat. To evaluate the strength of material with internal cracks, one
can start with the solution of a class of problems within the elasticity theory for three-dimensional bodies weakened by
spatially-bent cracks. Such cracks could be modelled by cuts on a part of some surface of revolution with its non-zero
curvature. In this case, there is a possibility to vary geometrical parameters of the surface and, by doing this, to bring
them closer to the geometry of real cracks. The experimental study of composite materials emphasise the practical
significance of this class of problems. Specifically, the heterogeneous media are being filled with the particles of
spherical or ellipsoidal form (for example, wolfram-carbide matrix reinforced by diamond grains). Their mechanical
characteristics depend, to a considerable degree, on the material solidity break, which appears, as a rule, on the
interphase boundary and is located on the parts of the spherical or ellipsoidal surface. The theory of spatial cracks
presents quite natural tendencies, when complicated geometry of cuts prompts the need to develop more complex
mathematical methods and to increase significantly the number of mathematical operations needed for their analysis.
This, obviously, provides an explanation to the fact that just a few publications deal with the studies of stress fields and
the displacements of elastic bodies with volumetrical cuts, although the importance of such studies was repeatedly
emphasised in research literature. The present paper examines the axisymmetric elastostatic problem for two-compound
body with a crack on a part of spherical surface located on the boundary of the division of elastic characteristics of
materials. This problem is linked to the study of stressed state of high-strength composite materials with low-percentage
content of the spherical dispersed particles.

MATHEMATICAL FORMULATION

Throughout the paper we consider an elastic space (v,, G;) containing a spherical inclusion (v;, G;) and there is a
spherical crack at their interface. Let 7, 6, ¢ denote spherical coordinates. The crack is modeled by a mathematical cut
along the part of spherical surface (r=ry, 0<0<0,, 0<p<2m). The surfaces are not at contact interact and the joint is ideal
along another part of the phase boundary. To solve the problem one can apply a superposition principle: the stress field
outside the cut is a sum of homogeneous stressed state for a space without crack and local stressed state of the crack
surfaces under uniform load of opposite sign [1]. Under such assumption the boundary problem may be formulated as
follows: to solve Lame's vector equation of equilibrium under the boundary conditions:
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where =7 > 16 r > 70  _ are the components of stress tensor and displacement vector for space (i=1) and
spherical inclusion (i=2); f; (6) — are the known functions corresponding to loading on the infinity; v; are the Poisson's

ratios, G; are the shear modules of space (i=1) and inclusion (i=2) materials.
METHOD OF SOLUTION

The study of a problem on equilibrium of elastic bodies with cuts on surfaces of the second power is based on general
solutions of the fundamental boundary problems of elasticity theory for bodies of revolution in curvilinear coordinates.
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Mathematical tools applied to examine these class of tasks are very diverse. One of them is the method proposed by
Love [2]. In Love's approach, the solution to the axisymmetric problem in classical elasticity may be represented in
terms of a single strain function that satisfies the biharmonic equation. The method of eigenfunctions is another general
one. The solutions of boundary problems for bodies of revolution in vector formulation with the help of complete vector
eigenfunctions sets were given by Ulitko [1]. In the axisymmetric case the method of direct integration is the most
simple and clear one for solving of Lame's equilibrium equation in the arbitrary curvilinear coordinates of revolution.

As assumed relationships the general solutions of elastic problems for a spherical inclusion and a space with a spherical
cavity presented in the form of series expansions by Legendre functions were taken [3]. The problem is reduced to an
interrelated system of coupled integral equations with respect to the Legendre functions, and then to a system of singular
integral equations with respect to two unknown functions.

As the result the asymptotic expressions for stress components were obtained in the form [4]:
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where the intensity factors of normal K, and tangential K, stress are determined by formula
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SOME EXAMPLES

As an example let us examine the case when the cut surfaces are under normal internal pressure of intensity g. First of all
note that the dependence of the stress intensity factors (SIF) on the Poisson's ratios that take values in the interval
0,2<v1,v,<0,42 is not significant. For example at vi=v,=1/3 and v,=1/3, v,=1/4 (G;=G,) SIF K, and K, are equal to 0,457
and 0,462, respectively. The behaviour of stress intensity factors in dependence on the ratio of inclusion and matrix shear
modules B=G,/G, for different angle 6, values of the cut is submitted in Figure 1. The results presented allows to compare
stress intensity factors for a composite (3>1) and homogeneous (B=1) materials. It follows from Figure 1 that SIF increase
with B increasing and exceed the corresponding values of SIF for homogeneous material. If one introduces parameters
Si=K,*/K,?, $,=K,* / K,'*, the superscripts (k) and (0) correspond to composite and homogeneous materials) they will
vary in the interval 1<S<1,5 (i=1,2) whil}e{ 1<B<60.
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Figure 1. The dependence of stress intensity factors on the
ratio of inclusion and matrix shear modules f=G,/G, for
different angle 6, values of the cut.
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