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Summary Non-stationary processes in various elastic media with moving inclusions like material point bodies, phase boundaries, de-
fects, are under investigation in this paper. The law of motion for an inclusion is considered to be unknown. Small strain approximation
is used. The interaction of inhomogeneities with the continuum is described by configurational forces (internal and external). This
statement leads to necessity to consider nonlinear (because configurational force is a quadratic quantity) non-stationary problems. A
new asymptotical approach for problems of such kind is suggested. The solution of simplest model problem (a point mass moving
along a string on an elastic foundation) is given and discussed.

CONFIGURATIONAL FORCES IN THE CASE OF INFINITESIMAL DEFORMATIONS

In frames of modern continuum mechanics the interaction of media with inhomogeneities like material point bodies,
phase boundaries, defects can be described by means of configurational forces. The notion of configurational (material,
thermodynamical) force appears as a generalization of notion of a force acting on a defect by Eshelby and crack-driving
force (J-integral) by Rice. Configurational forces are quantities, which perform work on velocities of moving sources
(defects, cracks, phase boundaries etc) in a continuum. They are useful to describe a dissipation (or, say better, energy
exchange with environment) accompanying motion of sources. At the time being the theory of configurational forces is
rapidly developing section of continuum mechanics. The state-of-the-art of the theory the reader can find in studies by
Gurtin [1], Kienzler & Herrmann [2], Maugin [3]. Below we give a short summary of basic formulae of the theory of
configurational forces for the case of infinitesimal deformations. Consider a pure mechanical non-polar medium. In the
paper we use the notation of direct tensor calculus, following Lurie [4].
Let U be the displacement vector, T be the stress tensor, U be the strain energy per unit volume, I be the identity tensor,
ρ be the mass density, b be the bulk external force. The equation for balance of momentum leads to the following
relationship

∇ · C + g + e + i = 0, (1)

where we call C = UI−T ·U∇ the configurational stress (the Eshelby tensor), g = −∇U+(∇U∇) ··T the bulk internal
configurational force, e = −∇U ·b the bulk external configurational force, i = ρ∇U ·Ü the bulk inertial configurational
force. Expression (1) can be transformed into different form

∇ · (C − KI) + g + U̇2 ∇ρ/2 + e = ṗ, (2)

where p = −ρ∇U · U̇ is so-called pseudomomentum, K is the kinetic energy per unit volume. Quantities C =
C − KI, g = g + 1

2
U̇2 ∇ρ are called sometimes the dynamic Eshelby tensor and the dynamic configurational force,

respectively.
Introduce now a simple mechanical system, where configurational forces play an important role. This is a migrating
control volume. The migrating control volume Pt is a set of r such as r ∈ Pt if and only if r−`(t) = x ∈ P. Here P is an
arbitrary domain fixed in reference configuration. Body Pt consists of different material points at different time instants.
For an arbitrary field Φ(r, t) introduce the time derivative of Φ following Pt: Φ̆(r, t) = ∂Φ(x + `(t), τ)/∂τ

∣

∣

τ=t
. In fact,

(̆.) is the derivative with respect to time in co-moving with Pt co-ordinate system. One has Φ̆ = Φ̇+v ·∇Φ, where v = ˙̀ .
Let us formulate the energy balance equation for Pt. One can obtain

d

dt

∫

Pt

(K + U) dV + γ =

∫

∂Pt

n · T · Ŭ dS +

∫

Pt

b · Ŭ dV + v ·
∫

∂Pt

n ·
(

KI + C
)

dS + v ·
∫

Pt

e dV (3)

Here −γ is the rate of non-mechanical energy exchange with environment of control volume Pt (γ is the dissipation), n
is the external normal to Pt. Exactly this relationship allows us to introduce the notions of “force on an inhomogeneity”,
“force on a defect” etc. Utilizing the time derivative (̆.) one can rewrite (2) into the form, which will be useful when
considering dynamic problems concerning moving sources. Let us transform material derivatives in (2) in accordance
with definition of (̆.). After calculations one gets

∇·
(

C−K
)

+g+e = p̆, K = ρ
(1

2
Ŭ2I+(v∇U ·Ŭ−v ·∇U ·Ŭ I)+(

1

2
v ·∇U ·U∇·v I−v∇U ·U∇·v)

)

. (4)

A MODEL PROBLEM AND ITS SOLUTION

Consider the classical problem concerning point body moving along the string on Winckler’s foundation [5, 6]. We use
the following notation: u(x, t)e⊥ is the transversal displacement of a point of the string with a position x at an instant of
time t; T0 is the string tension; ρ is the density of the string per unit length; c =

√

T0/ρ is the speed of sound (the critical



speed); l(t) is the position of the point body; k0 = T0k > 0 is the rigidity of foundation; f0 = T0(f‖e‖ + f⊥e⊥) is the
prescribed external force acting on the point body; F0 = T0(F‖e‖ + F⊥e⊥) is the force acting on the string from the
point body; m0 = T0m is the mass of the point body. The square and angle brackets denote the jump and mean value at
x = l(t), respectively. The governing equations are as follows

u′′ − c−2 ü − ku = −F⊥ δ(x − l(t)),
d2

dt2
u(l(t), t) = f⊥ − F⊥ (5)

The motion of the point body along the string is governed by the following law [5, 6]

ml̈ = F + f‖ F = F⊥〈u′〉 = −(1− l̇2/c2)[u′2]/2. (6)

Here F is so-called wave resistance force [5, 6]. The second equation in (6) can be obtained using energy balance equation
in the form similar to Eq. (3) formulated for the control volume [l(t)−R; l(t) + R] with sufficiently large R. Comparing
the general definition of the external configurational force (see above) and the first representation for F from (6) one
can show that F can be considered as external configurational force exerting on the string from the point body. The
second representation of F follows from one-dimensional equation, which is analogous to Eq. (4). In fact the quantity
−(1 − l̇2/c2)[u′2]/2 is exactly the jump of the one-dimensional analogue of tensor C − K. For simplicity consider
zero initial conditions for u. Thus we have non-stationary (because l̇ is not a constant) nonlinear problem with unknown
boundary l(t). The nonlinearity is associated with quadratic law for F . To investigate this problem we suggest a new
analytical approach based on the work by Gavrilov & Indeitsev [7], where the motion of the point body with prescribed
law l(t) was considered. In our approach we utilize the stationary phase method and the method of multiple scales.
Main supposition: l̈(t) = O(ε2), t → ∞, l̇ = O(1) — quasi-stationary asymptotics.

1. Suppose l(t) to be a given function, l̇ = const. For t → ∞ select the set of pronounced frequencies in spectrum of
u(l(t), t).

2. For l̈(t) = O(ε2) approximate u(l(t), t) by a sum w of modes with slowly varying pronounced frequencies.

3. Describe the evolution in time of selected modes using the method of multiple scales.

4. Find out the near-field approximation of wave field in a vicinity of the source using the method of multiple scales.

5. Obtain w for given l(t).

6. Find out l(t) for given f‖.

Application of this approach to the problem under consideration yields the following results. The law of motion for the
point body is

(Ml̇)· = f‖, M = m

(

1 +
α

(c2 − l̇2)3/2

)

, α =
c f2

⊥

4m
√

k
. (7)

The “effective mass” M depends on the speed l̇ and tends to infinity when |̇l| → c.

CONCLUSION

In this paper we demonstrated that the “wave pressure force”, which is known from the beginning of XXth century,
can be considered as a configurational force and can be calculated as jump (in the one-dimensional case) or flux of
a quantity related to the Eshelby tensor. We guess that this is a quite important fact, since it leads to the similarity
for mathematical statements of dynamical problems concerning phase boundaries propagation (in the theory of phase
transformations of elastic bodies), moving dislocations etc on the one hand, and classical problems concerning moving
loads on the other hand. Furthermore, we suppose that the analytical approach suggested, which works efficiently for
moving inertial inclusions, can be applied also in frames of modern fields of mechanics mentioned above. In particular we
expect that it can be used for the investigation of dynamical problems concerning phase transformation in one-dimensional
elastic bodies (strings [8], beams [9]) and to obtain the equation for motion of dislocation [10] in more compact form.
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