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Summary Nonlinear radial oscillations of thin-walled cylindrical tubes with either radial, tangential or longitudinal isotropy are stud-
ied. Free oscillations are considered and the effect of the anisotropy is analysed. To investigate solutions with time dependent net
applied pressures the Lie point symmetry structure of the differential equations is examined.

A hyperelastic material is said to prossess transverse isotropy with respect to a dingttisrstrain-energy functioml’

is invariant under rotations abolif1,2]. Nonlinear radial oscillations of a cylindrical tube with either radial, trangential
or longitudinal transverse isotropy are considered [3,4].

Consider a thin-walled anisotropic cylindrical tube of incompressible elastic material of constant génditye inner
and outer radii of the undeformed tube aieandp, and the inner radius of the deformed tube at tiner; (¢). Let

_ni(®)
o) = L1 (1)

Pressure$ (t) and P2 (t) are applied to the inner and outer surfaces. The strain-energy funidtipis, of the form
W:W(Il,lg, Kl,KQ), (2)
where the principal invariantg; andl,, are given by
L=DL=a*+12 11 (3)
1=12=2 22
and K, and K, for radial, tangential and longitudinal transverse isotropy are respectively,
Ki=—,Ky=—; Ki=2* Ky=2"; K; =K, =1. (4)

It is shown that for radial, tangential and longitudinal transverse isotropy,

d*>x  dW,
— +—=xP(t
where ( )
2( Pi(t) — Pa(t) 2
1 1 2 P2
Wo = W, P(t)= cp=(>=) 1. 6
T © 1p* 3 : (m) (6)
Equation (5) has the same form as that for radial oscillations of a thin-walled isotropic cylindrical tube.
The strain-energy function
chl(ll—3)+CQ([2—3)+03(K1—1)+C4(K2—1), (7)

where(C1, Cs, C3 andCy are constants, is considered. The undeformed body is stress free progided-2C,. We
will assume that’; + Cs + Cy > 0 to satisfy stability conditions. Then for radial, tangential and longitudinal transverse
isotropy, equation (5) becomes, respectively,

d%x 1 1

d*z 1 3
ﬁ+(D17D27P(t)).L:DlﬁfD2L 5 (9)
d*x 1
—5 T (D1 = P(t))z =D —, (10)

where
- 2(01 + 02) D 4C,y

p* pi

D,



WhenP(t) is constant, equations (8), (9) and (10) can be integrated immediately and the solution reduced to a quadrature.
Free oscillations with initial conditions
x(0)==z9, z(0)=0, (12)

are considered. For both radial and tangential transverse isotropic materials the period of oscillation is less than that for
isotropic materials. The range of oscillationig < x < x; if 9 < 1 andz; < z < xq if ¢ > 1. For isotropic materials

xox1 = 1. For radial transverse isotropy it is found thgtc; > 1 while for tangential transverse isotropyz; < 1.

The Lie point symmetries of (8), (9) and (10) are investigated to examine if the equations can be integratétiwhen

P(t).

Equation (10) is the Ermakov-Pinney equation which also describes radial oscillations of an isotropic cylindrical tube. It
has three Lie point symmetries which can be used to derive a nonlinear superposition principle, [5,6,].

Equation (8) has no Lie point symmetries when= P(t) if D; # D,. However, if D; = D5 then (8) has the Lie point
symmetry

o 1 0
X = A —+- v — 1
(t+A) 5+ 505 (13)
providedP(t) is of the form
B
Pt)=D1— —— 14
() =Di = 5 (14)
whereA > 0 and B are arbitrary constants. Using the Lie point symmetry (13), equation (8) can be transformed to the
autonomous equation
2z* 1 dz* 2 Dy
_Z B— )zt == 1
a2 3 dtr +( 9)96 25 (15)
where
* Zz * t*

Equation (9) has no Lie point symmetries when= P(t) if D; # 0 andD, # 0. For the extreme anisotropic case in
which D; = 0, Dy # 0, equation (9) has the Lie point symmetry

0 0
providedP(t) is of the form
B
P(t) = —Dy — TrAR (18)

whereA > 0 and B are arbitrary constants. Using the Lie point symmetry (17), equation (9) can be transformed to the
autonomous equation

d?z* dx*

——— -3+ (2+ B)2* = —Dy2*. 19

gz S T@+B)e 2 (19)
Equations (15) and (19) are solved numerically using a 4th order Runge-Kutta method. The solutions are compared with
radial oscillations of an isotropic thin-walled cylindrical tube with the same valués pD, and P(¢).
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