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Summary Nonlinear radial oscillations of thin-walled cylindrical tubes with either radial, tangential or longitudinal isotropy are stud-
ied. Free oscillations are considered and the effect of the anisotropy is analysed. To investigate solutions with time dependent net
applied pressures the Lie point symmetry structure of the differential equations is examined.

A hyperelastic material is said to prossess transverse isotropy with respect to a directionh if its strain-energy functionW
is invariant under rotations abouth [1,2]. Nonlinear radial oscillations of a cylindrical tube with either radial, trangential
or longitudinal transverse isotropy are considered [3,4].
Consider a thin-walled anisotropic cylindrical tube of incompressible elastic material of constant densityρ∗. The inner
and outer radii of the undeformed tube areρ1 andρ2 and the inner radius of the deformed tube at timet is r1(t). Let

x(t) =
r1(t)
ρ1

. (1)

PressuresP1(t) andP2(t) are applied to the inner and outer surfaces. The strain-energy function,W , is of the form

W = W (I1, I2, K1,K2), (2)

where the principal invariants,I1 andI2, are given by

I1 = I2 = x2 +
1
x2

+ 1 (3)

andK1 andK2 for radial, tangential and longitudinal transverse isotropy are respectively,

K1 =
1
x2

, K2 =
1
x4

; K1 = x2, K2 = x4 ; K1 = K2 = 1 . (4)

It is shown that for radial, tangential and longitudinal transverse isotropy,

d2x

dt2
+

dW0

dx
= xP (t) , (5)

where

W0 =
1

ρ∗ ρ2
1

W , P (t) =
2
(
P1(t)− P2(t)

)
µρ∗ ρ2

1

, µ =
(ρ2

ρ1

)2

− 1 . (6)

Equation (5) has the same form as that for radial oscillations of a thin-walled isotropic cylindrical tube.
The strain-energy function

W = C1(I1 − 3) + C2(I2 − 3) + C3(K1 − 1) + C4(K2 − 1), (7)

whereC1, C2, C3 andC4 are constants, is considered. The undeformed body is stress free providedC3 = −2C4. We
will assume thatC1 + C2 + C4 > 0 to satisfy stability conditions. Then for radial, tangential and longitudinal transverse
isotropy, equation (5) becomes, respectively,

d2x

dt2
+

(
D1 − P (t)

)
x = (D1 −D2)

1
x3

+ D2
1
x5

, (8)

d2x

dt2
+

(
D1 −D2 − P (t)

)
x = D1

1
x3
−D2 x3 , (9)

d2x

dt2
+

(
D1 − P (t)

)
x = D1

1
x3

, (10)

where

D1 =
2(C1 + C2)

ρ∗ ρ2
1

, D2 =
4C4

ρ∗ ρ2
1

. (11)



WhenP (t) is constant, equations (8), (9) and (10) can be integrated immediately and the solution reduced to a quadrature.
Free oscillations with initial conditions

x(0) = x0 , ẋ(0) = 0 , (12)

are considered. For both radial and tangential transverse isotropic materials the period of oscillation is less than that for
isotropic materials. The range of oscillation isx0 ≤ x ≤ x1 if x0 < 1 andx1 ≤ x ≤ x0 if x0 > 1. For isotropic materials
x0x1 = 1. For radial transverse isotropy it is found thatx0x1 > 1 while for tangential transverse isotropyx0x1 < 1.
The Lie point symmetries of (8), (9) and (10) are investigated to examine if the equations can be integrated whenP =
P (t).
Equation (10) is the Ermakov-Pinney equation which also describes radial oscillations of an isotropic cylindrical tube. It
has three Lie point symmetries which can be used to derive a nonlinear superposition principle, [5,6,].
Equation (8) has no Lie point symmetries whenP = P (t) if D1 6= D2. However, ifD1 = D2 then (8) has the Lie point
symmetry

X = (t + A)
∂

∂t
+

1
3

x
∂

∂x
, (13)

providedP (t) is of the form

P (t) = D1 −
B

(t + A)2
, (14)

whereA > 0 andB are arbitrary constants. Using the Lie point symmetry (13), equation (8) can be transformed to the
autonomous equation

d2x∗

dt∗2
− 1

3
dx∗

dt∗
+

(
B − 2

9

)
x∗ =

D1

x∗5
, (15)

where

x∗ =
x

(t + A)1/3
, t∗ = ln

(
1 +

t∗

A

)
. (16)

Equation (9) has no Lie point symmetries whenP = P (t) if D1 6= 0 andD2 6= 0. For the extreme anisotropic case in
whichD1 = 0, D2 6= 0, equation (9) has the Lie point symmetry

x = (t + A)
∂

∂t
− x

∂

∂x
, (17)

providedP (t) is of the form

P (t) = −D2 −
B

(t + A)2
, (18)

whereA > 0 andB are arbitrary constants. Using the Lie point symmetry (17), equation (9) can be transformed to the
autonomous equation

d2x∗

dt∗2
− 3

dx∗

dt∗
+ (2 + B) x∗ = −D2x

∗3 . (19)

Equations (15) and (19) are solved numerically using a 4th order Runge-Kutta method. The solutions are compared with
radial oscillations of an isotropic thin-walled cylindrical tube with the same values ofD1, D2 andP (t).
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