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Summary While the traditional stress concentration factor for a given loading is the ratio between the maximal stress in a body and
the stress evaluated using simplified geometry, we regard the stress concentration factor as the ratio between the maximum of a stress
component over the body, and the maximum value of the applied force fields. Then, for the given loading, we consider an optimal stress
distribution which is a stress tensor field together with additional volume force density that will equilibrate the external loading and will
result in the smallest stress concentration factor. Finally, the generalized stress concentration factorK is defined as the maximum of
all optimal stress concentration factors for all external loading fields. The generalized stress concentration factor is clearly a geometric
property of the body. It is shown thatK is equal to the norm of the mapping that extends Sobolev functions defined in the interior of
the body to its closure.

BASIC DEFINITIONS

Traditional stress concentration factors (see for example Peterson [2]) specify the ratio between the maximal value of a
stress component in a body and the maximum value of that component for simplified, idealized geometry. The stress
concentration factors are evaluated using analytical, numerical and experimental methods for given loadings and material
properties. It is noted that the nominal stress calculated for the simplified geometry may be regarded as the boundary
traction at a large distance away from the nontrivial geometry. For example, for a finite plate containing a hole, the nominal
stress may be regarded as the boundary traction on the edge of the plate. This suggests that the stress concentration factor
be represented by the ratio

KF =
supx,i,k {|σik(x)|}

supi,x,y {|bi (x)| , |ti (y)|}
, x ∈ Int B, y ∈ ∂ B,

wherebi and ti are the body force and surface force distributions associated with the given loadingF . Thus, the dis-
tribution of the body force is also considered in the comparison. It is assumed throughout that the body is a compact
3-dimensional submanifold ofR3 having a differentiable boundary.
In the last expression, the maximum overi in the denominator (e.g., maxi {|bi (x)|}) and the maximum overi, k in the
numerator serve as norms onR3 and on the spaceL(R3, R3) of linear mappings defined onR3. These may be replaced by
other norms and we will use|b(x)| and|t (x)| to denote the norms of the values atx ∈ B of the body force vector fieldb
and surface force vector fieldt associated with the given loadingF . We denote by|σ(x)| the norm of the the value of the
stress atx. Thus, the stress concentration factor may be written as

KF =
supx {|σ(x)|}

supx,y {|b(x)| , |t (y)|}
, x ∈ Int B, y ∈ ∂ B.

Here and in the following, we ignore high values of the stresses and body forces if they are restricted to subsets of the
body of zero volume. Similarly, we ignore high values of the surface force if it is restricted to subsets of the boundary of
zero area. Thus, the suprema overx andy are in effect essential suprema.
The concept of stress concentration is developed below in a number of steps. Firstly, we consider for the given external
loadingF , the collection6F of all stress fields that are in equilibrium withF . We denote byK F,optimal the smallest stress
concentration factor. This may be conceived as a process of structural optimization. Thus,

K F,optimal
=

infσ∈6F

{
supx {|σ(x)|}

}
supx,y {|b(x)| , |t (y)|}

.

In the abstract notationσ , we consider not just stress tensor fieldsσik but include self forces—force volume densities
σi . The self forces may be thought of as additional body forces that one may apply in order to reduce the stresses or as
“3-dimensional elastic foundations”. Thus, this generalized stress fieldσ has 12 components and the norm of its value at
any point should be modified accordingly (e.g.,|σ(x)| = supi,k,l {|σi (x)| , |σkl(x)|}). With the self forces, the equations
of equilibrium assume the form

σik,k + bi = σi , in Int B.

Alternatively, the equivalent principle of virtual work is written as∫
Int B

bi wi dV +
∫
∂ B

ti wi dA =
∫

Int B

σi wi dV +
∫

Int B

σikwi,kdV.

Noting that one usually does not know the exact nature of the loading in advance, we allow the force distribution to vary
and consider the worst case, i.e.,

K = sup
F

{
K F,optimal

}
= sup

F

{
infσ∈6F

{
supx {|σ(x)|}

}
supx,y {|b(x)| , |t (y)|}

}
.



We will refer to K as thegeneralized stress concentration factor. Clearly, the generalized stress concentration factor is a
pure geometric property of the body.

THE RESULT: K = ‖ι‖

We prove that the generalized stress concentration factorK is equal to the norm of a mappingι that takes a function defined
in the interior IntB of the body and extends it to the closed bodyB (see [3]). Specifically, letL1

1(Int B, R3) denote the
Sobolev space of vector fields over the interior of the body with integrable components and integrable derivatives of the
components. This space is equipped with the Sobolev norm

‖u‖ =
∫

Int B

|u|dV +
∫

Int B

|∇u|dV.

Then, one of the basic properties of Sobolev functions (see [1]) implies that each Sobolev vector fieldu ∈ L1
1(Int B, R3)

may be extended toB in such a way that the restriction of the extension to the boundary, its traceû, is integrable over
the boundary. We useL1,µ(B, R3) to denote the space of integrable vector fields over the body whose restrictions to the
boundary are integrable over the boundary. Forw ∈ L1,µ(B, R3) we use the norm

‖w‖L1,µ

=

∫
Int B

|w|dV +
∫
∂ B

|w|dA.

Thus, the norm of the extension mappingι : L1
1(Int B, R3)→ L1,µ(B, R3) is given by

‖ι‖ = sup
u

‖ι(u)‖

‖u‖
= sup

u∈L1
1(Int B,R3)

∫
Int B
|u|dV +

∫
∂ B

∣∣û∣∣ dA∫
Int B
|u|dV +

∫
Int B
|∇u|dV

,

which is clearly a geometric property of the body.

OUTLINE OF THE PROOF

The proof (see [3] for the details) uses standard results of analysis. The various function spaces and mappings involved are
presented in the diagram below. Specifically, one uses the duality of theL1 andL∞ spaces and the fact that‖ι‖ = ‖ι∗‖,
whereι∗ denotes the mapping dual to the extensionι. Referring to elements ofL1(Int B, R12) as local virtual velocities,
the mappingj : L1

1(Int B, R3) → L1(Int B, R12) is defined byj (u) = (u,∇u) and one can easily see that it is a norm-
preserving injection. This implies that every elementS ∈ L1

1(Int B, R3)∗ is of the formS= j ∗(σ ) for some stress field
σ . In addition, the dual norm ofSmay be calculated using

‖S‖L1
1 = inf

S= j ∗(σ )

{
‖σ‖L∞

}
.

Finally, equilibrium or equivalently, the principle of virtual work, may be written asι∗(F) = j ∗(σ ).

Virtual Velocities Local Virtual Velocities∥∥∥ ∥∥∥
L1,µ(B, R3)

ι
←−−−− L1

1(Int B, R3)
j

−−−−→ L1(Int B, R12)

L1,µ(B, R3)∗
ι∗

−−−−→ L1
1(Int B, R3)

∗ j ∗
←−−−− L1(Int B, R12)∗∥∥∥ ∥∥∥

L∞,µ(B, R3) L∞(Int B, R12)∥∥∥ ∥∥∥
Forces Stresses
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