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ON INVARIANTS OF THE ELASTICITY TENSOR FOR ORTHOTROPIC MATERIALS
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Summary The fourth order elasticity tensor for linear elastic material of orthotropic symmetry is studied. The set of nine invariants of
this tensor is proposed allowing uniquely specify the form of the tensor in any basis. The set of invariants is composed of six Kelvin
moduli and three invariants of the selected orthogonal projectors. In order to derive the presented results spectral theorem for elasticity
tensor as well as harmonic decomposition for the orthogonal projectors of the orthotropic stiffness tensor are used.

INTRODUCTION

Materials of new generation already during their projecting are supposed to be characterized by some prescribed prop-
erties. These properties can refer to their strength, way of deformation, resistance to external forces. Therefore, it is
demanded to know appropriate criteria for the assessment of these properties. It requires profound theoretical knowledge
and working-out new technological solutions. At the same time in many cases computer Finite Element Method simula-
tions are conducted to determine elastic constants for the considered biological materials such as bones and other tissues
or the current properties of damaged engineering materials. It is necessary to formulate the criteria for identification of
symmetry type of the material.
The vast number of composites materials and textured metals exhibit at least orthotropic symmetry. Also for biological
tissues as well as in damage analysis orthotropic approximation of elastic properties is considered to be admissible.
The form of stiffness tensor for orthotropic material and its spectral analysis is widely known [5] [2], [6]. As it was shown,
such tensor is specified by nine independent parameters: six Kelvin moduli and three stiffness distributors defining three
out of six eigen-states. However, definitions of three stiffness distributors with use of invariants of eigen-states was not yet
proposed. Below, we derived such definitions that allow to specify uniquely elasticity tensor for any orthotropic material.

SPECTRAL THEOREM FOR ORTHOTROPIC SYMMETRY

Any orthotropic linear elastic material can be described by the fourth order tensor that in general has six mutually different
positive eigenvalues called Kelvin moduliλK and six orthonormal eigen-stateswK among which three are pure shears
with common direction of shearing for every pair among them. Let us number them subsequently byI = 4, 5, 6. More-
over, three direction of shearing obtained by these definition are mutually orthogonal and form the orthonormal basis of
main orthotropy directions [1]. Remaining three eigen-states are coaxial and their eigenvectors are align along orthotropy
directions. We may derive diads of orthotropy directionsmk ⊗mk wherek = 1, 2, 3 (no summation) in following way

m1 ⊗m1 = I− 2w2
4, m2 ⊗m2 = I− 2w2

5, m3 ⊗m3 = I− 2w2
6, (1)

It should be noted that as far as ordering rule forwI , i = 4, 5, 6 has not been yet uniquely specified alsonumberingof
orthotropy directions has not been established at this stage. We will introduce such rule later.
It was shown by use of spectral theorem that orthotropy can be described by 9 values independent on the basis selection
that is six Kelvin moduli and three stiffness distributors specifying orientation of three orthonormal coaxial eigen-states
in three dimensional space of the second order tensors with common eigenvectors. These three stiffness distributors may
be defined with use of the polynomial invariants of considered eigen-states.
Six Kelvin moduli are derived from the characteristic equations forC where coefficients can be expressed by six invariants
of powers of stiffness tensorsC, that is

TrC, TrC2, TrC3, TrC4, TrC5, DetC (2)

where forA being the fourth order tensor with componentsAijkl, operationTrA givesAijij , DetA denotes determinant
of matrix with componentsAKL = aK : A : aL where second order tensorsaK constitute orthonormal basis in the space
of second order symmetric tensors.

STIFFNESS DISTRIBUTORS

Definition
First, let us order coaxial eigen-states according to the following rule

K > L ⇐⇒ (trwK)2 > (trwL)2 K, L = 1, 2, 3 (3)

If above squeres of traces are equal to each other we number the eigen-states by deacresing values of(detwK)2.
It can be prooved that the following set of three invariants allow uniquely specify diads of coaxial eigen-states called
orthogonal projectors

η1 = trh2
1, η2 =

deth1

(trw1)3
(4)



where byhK we denote deviator ofwK . These two distributors one may expressed by following relations

η1 = 1− 1
3
(trw1)2, η2 =

1
(trw1)3

[
detw1 − 5

54
(trw1)3 +

1
6
trw1

]
(5)

Third distributor is defined in the general case as a following function of common invariants ofw1 i w2

η3 =
tr(w2

1w2)
trw2

. (6)

The above definition must be modified in the case whenη1 = 0 or two eigenvalues ofw1 are equal to each other
correspondingly in the form

η∗3 = (deth2)2, η∗∗3 =
deth2

(trw2)3
. (7)

First two distributors allow to derive two sets of eigenvalues corresponding tow1 and−w1. According to the decreasing
absolute value of these eigenvalues orthotropy axes are numbered. Let us underlined that the eigenstatew3 is specified
within its sign by orthonormality conditions.
Let us note thatη1 = 0 implies immediatelyη2 = 0 and specifiesw1 as the normalized hydrostatic state1√

3
I. Remaining

eigenstates are then deviatoric and orthotropy axes are numbered in view of decreasing absolute value of eigenvalues of
±w2.
If two eigenvalues ofw1 have the same absolute value then corresponding orthotropy axes are numbered in view of
appropriate rule applied for±w2.
Finally, let us show that the invariants of eigenstates specified by equations (4) and (6) are also the invariants of the
corresponding orthogonal projectorsPK = wK ⊗ wK (K = 1, 2, 3, no summation). Let us apply for them invariant
harmonic decomposition [3]:PK ⇔ {h(K)

P , h
(K)
D , n(K), m(K), D(K)}. We find that

η1 = 1− h
(1)
P , η2 =

detm(1)

(3h
(1)
P )3

, η3 =
1

3h
(2)
P

(
tr(m(2)n(1)) + h

(2)
P

)
(8)

whereh
(K)
P = 1

3I : PK : I and second order tensorsm(K) andn(K) are deviators of the following tensors

m̃(K) = PK : I, ñ(K) = tr2,5tr3,6(PK ⊗ I). (9)

Reduction for special cases of orthotropy
Let us now shortly discuss reduction of invariants for special cases of orthotropy such as volume-isotropic material,
transversally isotropic material and material of cubic symmetry.
In the case of the volume-isotropic material the stiffness tensor is specified by six Kelvin moduli and one distributorη?

3 .
In this casewI is hydrostatic andη1 = η2 = 0.
In the case of transversally isotropic material we have to do only with four essentially different Kelvin moduli. More
details concerning spectral decomposition one may find in [4]. Furthermore it can be shown that out of three distributors
only one is necessary to establishw1 andw2 that isη2, so only five invariants uniquely define stiffness tensor for any
transversally isotropic material.
For the material of cubic symmetry three Kelvin moduli are essentially different. For three pure shearswK , K = 4, 5, 6 we
have one Kelvin modulus. Forw2 andw3 we have the second Kelvin modulus and the third Kelvin modulus corresponds
to w1 whereη1 = η2 = 0. Distributorη3 is then insignificant.

CONCLUSIONS

Nine invariants of the orthotropic elasticity tensor has been derived that allow uniquely specify this tensor independently
on the basis selection. It allows to investigate apparent orthotropy of the material as well as to compare two orthotropic
materials. It seems useful in projecting materials as well as in identifying material orthotropy for biological and damaged
material. The proposed approach that is based on the spectral theorem can be applied for the stiffness tensors of lower
symmetry.
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