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Summary We present a new micromechanically based constitutive model for the description of the Mullins—type stress softening ob-
served in rubbery polymers. The constitutive approach, embedded in the full network theory, has a basic two—step procedure: (i) The set
up micromechanically based constitutive models for a single chain orientation and (ii) the definition of the macroscopic stress response
of the network by a directly evaluated micro—to—macro transition for a discrete orientation space over the micro sphere. Due to the in-
herent structure of the model, one dimensional scalar variables govern the model and the deformation—induced anisotropy is achieved.

Description of Mullins’ Effect

Rubbery polymers exhibit deformation—induced stress softening behavior, so—called Mullins’ effect, in particular under
cyclic loadings. Mullins’ effect is more pronounced in the filled stock than in the pure gum one. Due to the this fact,
molecular scenarios based on the breakdown of the stiffening due to the fillers have been proposed since 1960s. In our
work we follow the molecular damage theory originally proposed by Bueche [1] and further developed by Govindjee and
Simo [2]. In this theory, the softening is based on the breaking of bonds between the chains and the fillers. In Figure 1a, a
schematic picture of the filled polymer network, composed of three chains with different contour lengths Lo> Lp> L4,
is shown. In a extension of the network in horizontal direction, first the chain A will reach its limiting extensibility and
detach from a particle. Due to the loss of contribution of the chain A to the network stiffness upon retraction of the
network, its response will be softer. In a further extension of the filled network from the totally unloaded state, stress—
stretch curve will trace the unloading path but beyond the previous maximum extension the longer chains reach their
limiting extensions. Therefore, chain B and chain C might debond from the particles and further softening is observed
in the unloading response. Softening in the stress-stretch behavior of the material in a typical quasi—static cyclic tensile
uniaxial experiment is depicted schematically in Figurelb. The curves in the stress—stretch diagram are labeled as a, b, c,
which correspond to the loading intervals with the same labels.
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Figure 1. a) Schematic representation of the filled polymer network. Three chains, labeled as A, B and C, extending between two filler
particles. Different contour lengths are assigned to each of them, Lo > Lg> L4 . b) Idealized description of Mullins’ effect in a
uniaxial cyclic tensile test. Stress—stretch response of the specimen is depicted along with corresponding loading function.

Constitutive Framework

During the addition of fillers in a sulfur vulcanization process of polymers, some of the chains constitute the network
between fillers, so—called particle—to—particle (PP) network. Some of them, on the other hand, run between crosslinks
so—called crosslink—to—crosslink (CC) network. Therefore, it is reasonable to decouple the total free energy into two
parts, ¥ = ¥.. + ¥,,. Response of the CC network is described by the full network model recently proposed in Miehe
et al. [4]. For the response of the PP network it is reasonable assume affine deformation due to the large size of the
filler particles. Therefore, in the construction of constitutive model for PP network, we base the formulation on the affine
version of the micro—sphere model. The free energy of the affine network W, is obtained by averaging of free energies
of chains oriented in different directions over the unit sphere surface, see Figure2a,b.
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In equation (1), continuous averaging integral over the continuous space directions is approximated by an effective discrete
integration, see Figure2c. In (1), F' and g denote the isochoric part of the deformation gradient F' and the current metric,
respectively. Free energy in each direction has the celebrated Langevin form. Then Kirchhoff stresses read from Doyle—
Ericksen formula 7,5 = 204U, = (Bt ®t) = ZZ 1 wiB; t; ® t; with the micro stress components in each orientation
Bi = (3N — A2)/(N — A?) . In the stress expression, z, N and w; denote the shear modulus, the number of modules in
a chain and the weighting factors, respectively. Following the observations reported in [2], Kirchhoff stresses contributed



by PP network, given in (2), is obtained by scaling the 3; with normalized stress function £ = «f (1/?1, d;) where 1@- and
d; stands for the normalized free energy computed in each direction ¢ and the scalar damage parameter evolving in this
orientation. The scaling function & has been found to be represented by family of curves each corresponding to the value of
the damage d;. Its explicit form is given by & = £(1;, di) = c1(di)[thi —c2(di)|2+c3(di) With ¢y = km exp((—1)™0pmd;)
form € {1,2,3}. Here, k,,, and §,, are the additional material parameters.
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In order to complete the formulation, an evolution equation for the damage variable d; is to be determined. The discon-
tinuous evolution equation is canonically obtained in a thermodynamically consistent way by maximizing the dissipation
in each direction with the constraint of a damage criterion function. The damage criterion function is assumed to have the
form ¢; = 1/71 —d; <0, see Miehe and Goktepe [5] for the details of the algorithmic setting. It should be carefully noted
that this type of damage formulations differ from the classical (1 — d) theory in the sense that it is not possible to separate
the damage parameters from the deformation. This feature of these models is essential for achieving correct shapes of
hysteresis, see Goktepe [3] for the comparison of (1 — d) theory with these type of models.
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Figure 2. Unit sphere microstructure. a) Representation of network structure in the microsphere b) The orientation of unit vector r
parameterized by spherical angles (¢, ) ¢) Stereographic pole projection of the unit sphere. Numerical implementation uses np = 21
integration points for the discrete microstate evaluation on the sphere. The points 22-25 are introduced for plotting purposes.

Numerical Examples

The modeling capacity of the proposed constitutive approach is investigated with respect to the fitting of well known
experimental data reported by Mullins and Tobin [6]. In Figure3a the performance of the proposed model is illustrated. It
should be noted that set effect generally observed in the experiments at the zero stress level is obtained due to the inherent
induced anisotropic feature of the model. In order to illustrate further the anisotropic feature of the model the simple shear
test at a material point is performed. Deformation and corresponding deformation gradient is given in Figure3b. At the
different stages of deformation, distribution of the softening is plotted on the pole figure, see also Figure2c. Evolution of
the maximum damage orientation during the deformation is clearly depicted.
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Figure 3. Numerical examples. a) Simulation of the test data reported by Mullins and Tobin [6] b) Distribution of damage over the
microsphere in a simple shear test at different stages of loading. Damage is increasing from red zone to blue one.
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