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LIFETIME PREDICTION WITH A DAMAGE MODEL BASED ON MIXED-MODE
MICROCRACK PROPAGATION
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Summary We will first present shortly a framework for brittle damage recently proposed by SCHÜTTE & B RUHNS (2002), where also
a more detailed description can be found. The damage evolution equations are based on micro-mechanical considerations. The crack
propagation in a unit cell containing a crack is based on a variational principle of an elastic body containing a crack in equilibrium (LE

ET.AL ., 1999). The thermodynamic equivalence of the micro- and macro-processes of crack growth and damage evolution is used to
derive the damage evolution law. We will conclude with numerical examples, which show the possibilities of the proposed model for
lifetime prediction.

MACROSCOPIC FRAMEWORK FOR FINITE ELASTODAMAGE

A finite framework for brittle damage is needed to consistently describe the damage process. For the underlying microme-
chanics see Figure 1.
A multiplicative decomposition of the total deformation
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Fig. 1: The stress strain curve resulting from a growing (micro)-crack

can help to describe this process:

F = FeFd. (1)

HereFe andFd denote the elastic and damage parts of the
deformation, respectively. The identification, however, of
Fe andFd, is quite different from the approach chosen in
finite elastoplasticity.Fe denotes that part of deformation,
which leads to elastically recoverable energy andFd the
one, the energy of which is dissipated.

Damaged tensor of elastic moduli
We want to show that the elastic properties can be represented in the proposed framework in a straight forward manner
by the use of push- and pull operations. The free energy density can be stated as a quadratic form in the intermediate
(damaged) configuration. The resulting stress-strain relation for the unloading process is then

s̄ = ρ̄
∂ψ̄

∂ēe
= C̄CCe : ē; (Ce

0)
ABCD = λ GABGCD + µ

(
GACGBD +GADGBC

)
whereē is the Almansi-strain of the intermediate configuration,GAB means the components of the reference metric and
we postulate isotropic undamaged material in the reference configuration. Damage can be represented by a push-forward
with the damage mapping (C̄CCe = Fd

. (CCCe
0) .). The Finger-tensor of the damaged configurationb̄d, works as an evolving

structural tensor. So we get

(C̄e)αβγδ = λ (b̄d)αβ(b̄d)γδ + µ
(
(b̄d)αγ(b̄d)βδ + (b̄d)αδ(b̄d)βγ

)
, b̄d = Fd

.

(
G−1

)
which is pointwise orthotropic.

MICROSOPIC FRAMEWORK

2-D crack growth in a unit cell
The micro-mechanical framework is based on the mechanics of a growing crack in a unit cell. The equations for the
threshold and direction of crack growth used in the subsequent derivations are based on LE & SCHÜTTE (1998) and LE
ET. AL (1999). A crack subject to a mixed mode loading condition can kink at an angleφ when it grows. LE & SCHÜTTE

(1998) have shown, that the driving force depending on the kinking angleφ can be expressed with the help of the SIFs at
the kinked crack tip

Gφ =
1− ν2

E
[(K?

I )2 + (K?
II)

2 +
1

1− ν
(K?

III)
2]. (2)

So the crack will grow in the direction which maximizesGφ4, if this exceeds certain threshold.
For the problem of an inclined crack in an infinite plate, we know the stress intensity factors prior to crack kinking (IRWIN,
1957) depending on the far-field stresses. The resulting kinking angle from the crack growth law is then

φmax = sgn(KII)[0.71λ3 − 0.0977 sin2(3.91λ)− 13.16 tanh(0.15λ)]; λ =
|KII |

KI + |KII |
(3)



which is a curve fitting for the plane part of the solution presented in LE, SCHÜTTE & STUMPF (1999).
After each infinitesimal step of crack propagation, we replace the kinked crack by an equivalent straight crack to take
advantage of the analytical equations. Equivalent crack means that it has the same rate of dissipation and amount of
additional crack length. The resulting differential equation for the orientation angle is

dβ̂

da
= 2

(
G? − Ĵ1

)
/
∂ψ̂crack

∂β̂
, ψ̂crack = 2

∫ â

0

Ĵ1dâ; Ĵ1 =
1− ν2

E

(
K̂2

I + K̂2
II

)
, (4)

Evolution law for the crack length
What is left up to specify now is an evolution equation for the crack lengtha. This relation shall be parametrized with the
help of the number of cyclesN . When the minimum load is such thatG?

min is smaller than the threshold value for crack
propagationG?

s the equation can be stated as (compare LEMAITRE & CHABOCHE (1990))

da
dN

= CG̃? η/2
max ; G̃?

max =
〈√

G?
max−

√
G?

s

〉2

(5)

MICRO-MACRO-TRANSITION

The transition is done by postulating the equivalence of the macroscopic

Fig. 2: The kinked and the replacement crack

damage dissipation rate and the microscopic change of the cracks potential

Dd = k̄d : d̄d =
ψ̇crack

A
=

2G?ȧ

A
, (6)

whereA is the area of the unit cell, andt its thickness. This leads to the
following damage evolution law

d̄d = − ȧ
t
(n? ⊗ n?), (7)

wheren? is the normal vector onto the new developing crack surfaces.

NUMERICAL EXAMPLES

The example computed was a strip with a hole under

Fig. 4: The specimen and the evolution of stress state over lifetime

a swelling unidirectional load. The constant maximum
stress at the corner of the hole of approx.533 MPa is
larger than the chosen fatigue limit ofσD = 500 MPa.
The initial crack length of the microcracks is set toa0 =
0.001 mm. The parameters of theParis’ law have been
chosen asC = 0.001 and eta = 3.0. In Figure 2
the stress in loading direction is given for the undam-
aged state, and three different numbers of cycles:N =
158559, 243709, 258645. At N = 158559 the stress
field is maintained approximately in its undamaged form,
but the stress at the corner is slightly reduced (≈ 520 MPa),
due to the distributed damage there. AtN = 243709 one
sees clearly that the damage heavily localizes, which re-
sults in a sharp crack emanating from the corner of the
hole. This macro-crack grows fast and leads to the fi-
nal failure of the specimen shortly after the stress state
shown atN = 258645.
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