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Summary Damage coupled model of elastic-moderate plastic material based on the concept by Hayakawa-Murakami is developed.
Incremental matrix constitutive equations for plane stress conditions, that account for damage anisotropy and crack opening/closing effect,
are explicitly derived and implemented to user subroutine of ABAQUS finite element code. Numerical examples illustrate consecutive
stages of elastic-damage and plastic-damage as well as stiffness recovery on reverse loading.

A thermodynamically consistent framework for elasto-plasticity coupled with damage, based on existing state and
dissipation coupling models, is discussed. Weak dissipation coupling, following a concept of existence of two
dissipation potentials, plastic ( )RF ,p σ  and damage ( )BF ,d Y , expressed in the space of thermodynamic forces

associated with the plasticity ( )r,pε  and damage ( )β,D  variables, is focused. Crack opening/closing response to
reverse loading cycles by the use of generalized projection operators that extends the Hansen and Schreyer [1] idea via
the additional material constant 1,0∈ζ , −+ += σεσε ζσε /// PPP , is incorporated.  This approach allows for effect of
negative principal components of strain or stress tensor on damage evolution, as observed in brittle materials (cf.
Murakami and Kamiya [2]).
The elastic-plastic-damage constitutive equations postulated in a total form and calibrated for spheroized graphite cast
iron by Hayakawa and Murakami [3] are adopted. They are based on the assumption of the Gibbs state potential 
 ( ) ( )βψβΓ ,,,:,,, e DεεσDσ rr −= (1)
where ψ  denotes the Helmholtz free energy per unit mass. based on the classical scheme the elastic strain and the
conjugate forces are
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where ( )DCes  stands for the effective, secant elastic-damage compliance tensor.
The dissipation potential is composed of two coupled parts

 ( ) ( ) ( )ββ ,,;,;,,,; dp rBFRFrXF m DYDσD +=  (3)
hence, when the extended normality rule is assumed both for plastic and damage surfaces, the plasticity and damage
fluxes are controlled by two Lagrange multipliers pλ&  and dλ&
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The Khun-Tucker relations are used in order to specify loading/unloading conditions for plasticity and damage,
respectively 

0p/d ≥λ& , 0p/d =F , 0p/dp/d =Fλ& . (5)
In order to derive elastic-damage equation in the incremental form

{ } ( ){ }σYDσCε && ,,ee = (6)
we follow procedure described in Kuna-Ciskał and Skrzypek [4] where the effective, tangent elastic-damage stiffness
matrix was determined based on the relevant model of elastic-damage materials [2]. The effective, tangent elastic-
damage compliance tensor is determined according to the scheme
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Plastic-damage strain increment is furnished as (cf. Bielski, Kuna-Ciskał and Skrzypek [5])
{ } ( ){ }σYDσCε && r,,,pp = (8)

Finally, in frame of small strain theory, we end-up with the general elastic-plastic-damage constitutive equation in the
incremental form

{ } ( ){ }σYDσCε && r,,,= (9)

with the local compliance matrix ( ) ( )r,,,,, pe YDσCYDσCC +=  dependent on variables at the consecutive equilibrium
point. When deriving equations (6), where unilateral damage effect is included by a concept of the modified stress
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tensor klijklij σσ B=   (cf. [3]), the main difficulty arises from the incremental transformation tensor 
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explicit application of which is somewhat cumbersome.
Hence, following [4], in the present paper we apply simplified formulae for the matrices B  and D , in order to derive
explicit form of the compliance matrix C  in plane stress 033 =σ  conditions { }122211 ,, σσσ=σ . In case of plane stress
the plane rotation by the angle α  of the stress tensor from a current system klσ  to principal directions Iσ ,
modification to Iσ  and backward transformation to the current system must be performed, such that, according to the
procedure for complex function, the following holds
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Taking inverse of the matrix C  the increments of stresses are calculated as 
{ } { }εCσ && 1−= (11)

where damage-coupled elastic-plastic stiffness 1−C  is accepted as an approximation of the local Jacobian matrix of the
constitutive model implemented to the ABAQUS finite element code. Effective algorithm for plastic and damage
loading/unloading conditions based on the doubly-passive predictor-plastic/damage corrector approach is used. A more
general, fully coupled return mapping computational algorithm, is due to Zhu and Cescotto [6].
Numerical examples illustrate capability of the model developed to simulate anisotropic damage effect on elastic and
elastic-plastic response of simple structures under plane stress conditions. Partial stiffness recovery on reverse uniaxial
loading cycles is also captured.

a) b) c)

Fig.1.a) kinematic loading cycle; b) stress-strain hysteresis
loop; c) elastic stiffness recovery
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