DAMAGE ACQUIRED ANISOTROPY IN ELASTIC-PLASTIC MATERIALS

Jacek J. Skrzypek, Halina Kuna-Ciskał, Jan Bielski* *Institute of Applied Mechanics, Cracow University of Technology, Jana Pawła II 37, 31-864 Cracow. Poland

Summary Damage coupled model of elastic-moderate plastic material based on the concept by Hayakawa-Murakami is developed. Incremental matrix constitutive equations for plane stress conditions, that account for damage anisotropy and crack opening/closing effect, are explicitly derived and implemented to user subroutine of ABAQUS finite element code. Numerical examples illustrate consecutive stages of elastic-damage and plastic-damage as well as stiffness recovery on reverse loading.

A thermodynamically consistent framework for elasto-plasticity coupled with damage, based on existing state and dissipation coupling models, is discussed. Weak dissipation coupling, following a concept of existence of two dissipation potentials, plastic $F^{p}(\sigma,R)$ and damage $F^{d}(\mathbf{Y},B)$, expressed in the space of thermodynamic forces associated with the plasticity $(\mathbf{\epsilon}^p, r)$ and damage (\mathbf{D}, β) variables, is focused. Crack opening/closing response to reverse loading cycles by the use of generalized projection operators that extends the Hansen and Schreyer [1] idea via the additional material constant $\zeta \in \langle 0,1 \rangle$, $\overline{\mathbf{P}}_{\varepsilon/\sigma} = \mathbf{P}_{\varepsilon/\sigma}^+ + \zeta \mathbf{P}_{\varepsilon/\sigma}^-$, is incorporated. This approach allows for effect of negative principal components of strain or stress tensor on damage evolution, as observed in brittle materials (cf. Murakami and Kamiya [2]).

The elastic-plastic-damage constitutive equations postulated in a total form and calibrated for spheroized graphite cast iron by Hayakawa and Murakami [3] are adopted. They are based on the assumption of the Gibbs state potential

$$\Gamma(\mathbf{\sigma}, r, \mathbf{D}, \beta) = \mathbf{\sigma} : \mathbf{\varepsilon} - \psi(\mathbf{\varepsilon}^{e}, r, \mathbf{D}, \beta)$$
(1)

where ψ denotes the Helmholtz free energy per unit mass. based on the classical scheme the elastic strain and the conjugate forces are

$$\mathbf{\epsilon}^{e} = \frac{\partial \Gamma}{\partial \mathbf{\sigma}} = {}^{s}\mathbf{C}^{e}(\mathbf{D}): \mathbf{\sigma}, \ R = \frac{\partial \Gamma}{\partial \mathbf{r}}, \ \mathbf{Y} = \frac{\partial \Gamma}{\partial \mathbf{D}}, \ B = \frac{\partial \Gamma}{\partial \beta}$$
 (2)

where ${}^{s}C^{e}(\mathbf{D})$ stands for the effective, secant elastic-damage compliance tensor.

The dissipation potential is composed of two coupled parts

$$F(X_m; r, \mathbf{D}, \beta) = F^{p}(\mathbf{\sigma}, R; \mathbf{D}) + F^{d}(\mathbf{Y}, B; \mathbf{D}, r, \beta)$$
(3)

hence, when the extended normality rule is assumed both for plastic and damage surfaces, the plasticity and damage fluxes are controlled by two Lagrange multipliers $\dot{\lambda}^p$ and $\dot{\lambda}^d$

$$\dot{\boldsymbol{\varepsilon}}^{p} = \dot{\lambda}^{p} \frac{\partial F^{p}}{\partial \boldsymbol{\sigma}}, \ \dot{r} = \dot{\lambda}^{p} \frac{\partial F^{p}}{\partial (-R)}, \ \dot{\mathbf{D}} = \dot{\lambda}^{d} \frac{\partial F^{d}}{\partial \mathbf{Y}}, \ \dot{\beta} = \dot{\lambda}^{d} \frac{\partial F^{d}}{\partial (-B)}$$
(4)

The Khun-Tucker relations are used in order to specify loading/unloading conditions for plasticity and damage, respectively

$$\dot{\lambda}^{\text{p/d}} \ge 0$$
, $F^{\text{p/d}} = 0$, $\dot{\lambda}^{\text{p/d}} F^{\text{p/d}} = 0$. (5)

In order to derive elastic-damage equation in the incremental form

$$\left\langle \dot{\mathbf{E}}^{e} \right\rangle = \mathbf{C}^{e} \left(\mathbf{\sigma}, \mathbf{D}, \mathbf{Y} \right) \left\langle \dot{\mathbf{\sigma}} \right\rangle \tag{6}$$

we follow procedure described in Kuna-Ciskał and Skrzypek [4] where the effective, tangent elastic-damage stiffness matrix was determined based on the relevant model of elastic-damage materials [2]. The effective, tangent elasticdamage compliance tensor is determined according to the scheme

$$\mathbf{C}^{\mathrm{e}}(\mathbf{\sigma}, \mathbf{D}, \mathbf{Y}) = {}^{\mathrm{s}}\mathbf{C}^{\mathrm{e}}(\mathbf{D}) + \frac{\partial^{\mathrm{s}}\mathbf{C}^{\mathrm{e}}(\mathbf{D})}{\partial \mathbf{D}} : \frac{\partial \mathbf{D}}{\partial \mathbf{\sigma}} : \mathbf{\sigma}$$
Plastic-damage strain increment is furnished as (cf. Bielski, Kuna-Ciskał and Skrzypek [5])

$$\left\langle \dot{\mathbf{\epsilon}}^{p} \right\rangle = \mathbf{C}^{p} (\mathbf{\sigma}, \mathbf{D}, \mathbf{Y}, r) \left\langle \dot{\mathbf{\sigma}} \right\rangle \tag{8}$$

Finally, in frame of small strain theory, we end-up with the general elastic-plastic-damage constitutive equation in the incremental form

$$\{\dot{\boldsymbol{\varepsilon}}\} = \mathbf{C}(\boldsymbol{\sigma}, \mathbf{D}, \mathbf{Y}, r)\{\dot{\boldsymbol{\sigma}}\}\tag{9}$$

with the local compliance matrix $C = C^{e}(\sigma, D, Y) + C^{p}(\sigma, D, Y, r)$ dependent on variables at the consecutive equilibrium point. When deriving equations (6), where unilateral damage effect is included by a concept of the modified stress tensor $\overline{\sigma}_{ij} = B_{ijkl}\sigma_{kl}$ (cf. [3]), the main difficulty arises from the incremental transformation tensor $D_{ijkl} = \frac{\partial \overline{\sigma}_{ij}}{\partial \sigma_{kl}}$, the

explicit application of which is somewhat cumbersome.

Hence, following [4], in the present paper we apply simplified formulae for the matrices **B** and **D**, in order to derive explicit form of the compliance matrix **C** in plane stress $\sigma_{33} = 0$ conditions $\sigma = \{\sigma_{11}, \sigma_{22}, \sigma_{12}\}$. In case of plane stress the plane rotation by the angle α of the stress tensor from a current system σ_{kl} to principal directions σ_{1} , modification to $\overline{\sigma}_{1}$ and backward transformation to the current system must be performed, such that, according to the procedure for complex function, the following holds

$$\frac{\partial \overline{\sigma}_{ij}}{\partial \sigma_{kl}} = B_{ijkl} + \frac{\partial B_{ijpq}}{\partial \alpha} \frac{\partial \alpha}{\partial \sigma_{kl}} \sigma_{pq}$$
(10)

Taking inverse of the matrix $\, \mathbf{C} \,$ the increments of stresses are calculated as

$$\{\dot{\boldsymbol{\sigma}}\} = \mathbf{C}^{-1}\{\dot{\boldsymbol{\epsilon}}\}\tag{11}$$

where damage-coupled elastic-plastic stiffness C^{-1} is accepted as an approximation of the local Jacobian matrix of the constitutive model implemented to the ABAQUS finite element code. Effective algorithm for plastic and damage loading/unloading conditions based on the doubly-passive predictor-plastic/damage corrector approach is used. A more general, fully coupled return mapping computational algorithm, is due to Zhu and Cescotto [6].

Numerical examples illustrate capability of the model developed to simulate anisotropic damage effect on elastic and elastic-plastic response of simple structures under plane stress conditions. Partial stiffness recovery on reverse uniaxial loading cycles is also captured.

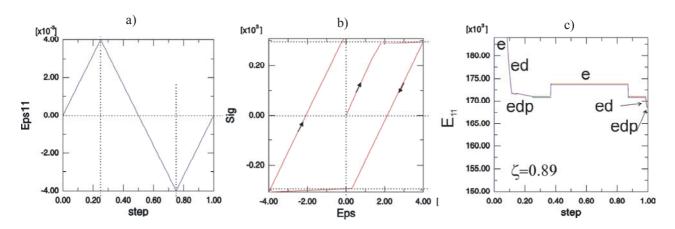


Fig.1.a) kinematic loading cycle; b) stress-strain hysteresis loop; c) elastic stiffness recovery

References

- [1] Hansen N.R., Schreyer H.L.: A thermodynamically consistent framework for theories of elastoplasticity coupled with damage. *Int. J. Solids Struct.*, 31, 359-389, 1994.
- [2] Murakami S., Kamiya K.: Constitutive and damage evolution equations of elastic-brittle materials based on irreversible thermodynamics. *Int. J. Mech. Sci.*, 39.473-486, 1997.
- [3] Hayakawa K., Murakami S.: Thermodynamical modeling of elastic-plastic damage, an experimental validation of damage potential. Int. J. Damage Mech., 6,333-363, 1997.
- [4] Kuna-Ciskał H., Skrzypek J.: CDM based modelling of damage and fracture mechanisms in concrete under tension and compression. *Eng. Fracture Mech.*, 71/4-6, 681-698, 2003.
- [5] Bielski J., Kuna-Ciskał H., Skrzypek J.: Numerical analysis of damage and fracture in elastic-plastic-damage materials. *Proc. Int. Symp. ABDM-2002, CD*
- [6] Zhu Y.Y., Cescotto S.: A fully coupled elasto-visco-plastic damage theory for anisotropic materials. Int. J. Solids Struct., 32, 1609-1641, 1995.