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Summary The paper deals with numerical analysis of crack nucleation and propagation caused by time-dependent 
process of deterioration in creep conditions. Three distinctive stages of the damage growth in a rectangular plate 
subjected to uniform pressure load are considered: nucleation in a point, propagation through the plate thickness, 
and development of critical network of the cracks bringing a structure to the final collapse. With corresponding 
times denoted by t1, t2 , and t3, their relationships had been evaluated to indicate the safety margins throughout 
the whole process. Spatial configuration of crack networks, including their profiles and branching, is shown as 
time-dependent process, which leads to the structure collapse caused by the loss of kinematical stability. 

INTRODUCTION 

Process of failure of structures caused by crack development is very complex one, but in general, three 
characteristic stages can be distinguished corresponding to the nucleation of first macro-crack, its propagation 
throughout structure’s body, and to the formation of collapse mechanism. The corresponding times limiting these 
stages are denoted as t1, t2 , and t3. The ratio of the values of these time instances can be viewed as safety margins 
set on structures’ behaviour. 
In the paper Continuum Damage Mechanics is used for analysis of damage growth in a metallic rectangular plate 
subjected to uniform pressure load. Some comparison between approach of Continuum Damage Mechanics and 
Fracture Mechanics to the problem of failure of structures solving is made.  
The set of constitutive equations was chosen as simple as possible to facilitate numerical analysis, but yet 
complex enough – to reflect typical process of creep of metallic structures (non-stationary creep with steady-
state and non-steady periods, stress redistribution, nonlinear dependency of strain rate on stress and coupling 
between deformation and deterioration): 
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where: e

ijε - the elastic strain tensor, c
ijε - the creep strain tensor, ijσ - the stress tensor, ijklD - the elastic 

constants tensor, ω  - the scalar damage parameter, m,A,n,γ - creep and damage material constants, t -  time. 

The equivalent stress eqσ in Eq. (3) is given by: 

 ( ) effeq σασασ −+= 1max  (4) 

where: maxσ  - the maximal principal tensile stress, effσ  - the Huber – Mises effective stress, α - 

parameter ( )10 ≤≤ α which characterises local failure mechanism mode. 
The case of 0=α corresponds to ductile (transgranular) fracture controlled by the effective stress whereas for 

1=α  the brittle (intergranular) fracture governed by the maximal principal tensile stress occurs. The 
intermediate values of α correspond to mixed modes of failure. 
The above constitutive equations completed together with equilibrium and compatibility equations form the set 
of problem governing equations that allow for effective solving of a problem of description the whole process of 
cracking structures. 
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NUMERICAL  PROCEDURES 

The set of problem governing equation has been integrated by means of numerical methods. The Finite Element 
Method for structure discretisation and Euler’s procedure for time integration was used. In the computer code the 
layered isoparametric eight-node Serendipity shell elements with reduced integration were employed. Ten layers 
and two-point Gaussian quadrature for volume integration were adopted. The time t1 is identified with ω = 1 
condition fulfilled in any layer and Gaussian point (that is numerical integration point). For time t > t1 these 
numerical integration points were excluded from further integration. When critical condition for damage 
parameter is reached in all ten layers of a Gaussian points the time is referred to as t2. Time of structure collapse 
t3 were identified with critical values of damage parameter in a whole finite element, which in turn lead to 
instability in numerical calculations. 

SOME  NUMERICAL  RESULTS 

In Fig. 1 upper and lower surfaces of one of the analysed plate (clamped plate, α = 1) are shown at time t2. The 
networks of macrocracks is shown also, with indication of their onset marked by ○, and through-body 
proliferation at time t2  marked by ◄. Though these cracks are seen as surface ones, in fact they penetrate the 
body of a structure. Profiles of the cracks along two cross sections (along clamped edge and through a mid-span 
of the plate) are shown in Fig.1 as well. 
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Figure 1: Cracking patterns at time t2. 
An advantage of Continuum Damage Mechanics’ approach, fully exploited in the present analysis, is twofold: 
first, the location for a point at which a macrocrack initiates comes out as a result of analysis. No assumption of 
this location has to be made as unavoidable assumption prior to further analysis, which is a case when Fracture 
Mechanics is to be applied. Further, the direction of a macrocracks and their branching it comes out as the result 
of Continuum Damage Mechanics analysis. Finally, three-dimensional profiles of the cracks penetrating 
structure’s body can be determined. 
 


