
A '
6 µ % 3 λ

4 µ
and B '

15 (1 & ν)
7 & 5 ν

and s :' K :σ where K :' I &
1

3
1 1 . (8)

σ̃ :' C :εe and σ :' C̃ :εe which give σ̃ :' C : S̃ :σ . (1)

σ̃ ' C : S̃ :σ ' C : [S % Sd ] :σ ' [I % C :S d ] :σ . (3)

wc(σ, f ) '
1
2

1
3 (3 λ % 2 µ)

(1 % A f ) [1 :σ]2 %
1

2 µ
(1 % B f ) s :s , (7)

g e '
Mwc(σ, f )

Mg e
'

1
3 (3 λ % 2 µ)

(1 % A f ) 1 1 :σ %
1

2 µ
(1 % B f ) K :σ . (9)

S :' 1
3 (3 λ % 2 µ)

1 1 %
1

2 µ
K and Sv(f ) :' A f

3 (3 λ % 2 µ)
1 1 %

B f
2 µ

K . (11)

εe ' S % Sv(f ) :σ , (10)

S̃ ' S % S d , (2)

σ̃ '
σ

1 & D
. (4)

C : S̃ ' I (1 & D )&1 which yields S̃ ' (1 & D )&1 S . (5)

S % Sd ' (1 & D )&1 S , which yields Sd '
D

1 & D
S . (6)

MATERIAL MODELS FOR HOOKEAN MATERIALS WITH VOIDS OR CRACKS

Kari Santaoja, Anniina Kuistiala
Helsinki University of Technology, P.O.Box 4100, FIN-02015 HUT, Finland

Summary: Stress-strain relations for Hookean materials with spherical voids or penny-shaped microcracks are derived. The
constitutive relation for voided material is based on the analytical expression by Eshelby whereas the theoretical work by
Kachanov provided the foundation for the material model of microcracked material. The postulate of strain equivalence
was shown to be incompatible with the analytical expression by Eshelby.   

Damage description by the postulate of strain equivalence - the effective stress  concept σ̃
By following the postulate of strain equivalence by Chaboche (1978, p. 19) the effective stress tensor  and the constitutiveσ̃
tensor for the damaged material  can be obtained fromC̃

Equation (1)3 utilises the definition of the compliance tensor for the damaged material . The definition is  . TheS̃ S̃ :C̃ :' I
compliance tensor  is assumed to be separable as follows:S̃

where the superscript “d” refers to damage. Substitution of the Separation (2) into Equation (1)3 yields

The  concept of the effective stress  by Rabotnov (1968, p. 344) can be extended for three-dimensional form as follows:σ̃

In order that Expressions (1)3 and (4) would equal, the following should hold:

Separation (2) allows Equation (5)2 to be written in the form

Porous material with linear elastic matrix
Eshelby (1957) studied the elastic field in a Hookean material containing an ellipsoidal inclusion. As a special case he
determined the value for the complementary strain-energy density  of a material containing “a volume fraction ” ofwc f
inhomogeneous spheres. For the purpose of this work the inhomogeneous spheres are “replaced” by spherical cavities. This
is done by assuming that the values for the elastic constants for the cavities vanish. The complementary strain-energy
density  takes the form (Eshelby, 1957, p. 390)wc(σ, f )

where λ and µ are the Lamé elastic constants of the matrix material. The values for the parameters  and  for sphericalA B
cavities and the deviatoric stress  and are obtained froms

The notations  and  refer to the second-order and to the fourth-order identity tensor. Based on Expression (7) the elastic1 I
strain tensor  takes the following form:g e

Expression (9) can be written in the form

where the compliance tensor for Hookean material  and the compliance tensor voids  are defined byS Sv( f )

Equation (6)2 shows that according to the postulate of strain equivalence the compliance tensors  and  have a linearS Sd



wc(σ, . . . ) '
1
2

1
3 (3 λ % 2 µ)

[1 :σ]2 %
1

2 µ
s :s %

1

Vb j
k

p ' 1

1
2

A p

( Pn p" σ)" Pb p dAp , (12)

εe ' S % Sc :σ . (15)

Pb pK
' B1 (a p )2 & r 2 σ" Pn p &

ν
2

Pn p ( Pn p" σ" Pn p ) , where B1 '
16 (1 & ν2 )
π E (2 & ν)

. (13)

Pb p
' B1 (a p )2 & r 2 σ" Pn p & [1 & H ] Pn p ( Pn p" σ" Pn p ) &

ν
2

H Pn p ( Pn p" σ" Pn p ) , where H ' H( Pn p" σ" Pn p ) . (14)

S c
1111 ' 4 B 1 &

ν
2 j

ρi j

q ' 1
A 3/2

q H(σ11 ) , where B '
8 (1 & ν2 )

3 π π (2 & ν) E
(16)

S c
1212 ' S c

1221 ' S c
2112 ' S c

2121 ' S c
1313 ' S c

1331 ' S c
3113 ' S c

3131 ' B j
ρi j

q ' 1
A 3/2

q . (17)

relationship. Comparison of Definitions (11) hows that material parameters and  have to equal in order the tensor A B Sv( f )
would be possible to express as a function of the tensor . If the Poisson’s ratio took the value of . Therefore, forS ν ' 0.2
steels, for example, the postulate of strain equivalence does not give compatible results with the analytical expression.

Hookean material with micricracks
According to Kachanov (1980, p. 1045) the complementary strain-energy density  of a Hookean solid with non-w c

interactive cracks is given by

where  is the volume of the body in the initial crack free configuration and  is the number of cracks within the volume Vb k Vb

(Vakulenko and Kachanov, 1971, p. 160 and 161). In Equation (12) the area of the  p’th crack is denoted by  and theAp

unit normal vector to the surface  is denoted by . The vector  describing the jump between the material pointsAp Pnp Pb p

across the crack is, according to Kachanov [1980, Eq. (20a)], for penny-shaped cracks

In Expression (13)  is the radius of the p’th microcrack,  is the radial coordinate of the microcrack. The superscript “K”a p r
in  refers to Kachanov. In Equation (13) a misprint is corrected i.e. the first term between the braces  by KachanovPb pK Pn p" σ
is replaced here by the term . In this work Kachanov’s Equation (13) [already corrected] is replaced byσ" Pn p

The Heaviside function  guarantees that under compression the microcrack surfaces do not penetrate each other.H(σ, Pn p )
Due to simplicity a uniaxial microcrack field is studied. The normals of the microcracks are assumed to be parallel to the

-axis. The stress-strain relation has the same form as for porous material, viz.x1

If the number of parallel microcracks is denoted by , the non-zero components of the compliance tensor  areρi j S c

and

Discussion and conclusions
The above given stress-strain relations for Hookean material with spherical voids or penny-shaped microcracks play
important role in damage mechanics, since they are based on analytical expressions. It is noteworthy that the results of the
postulate of strain energy are in contradiction with the analytical stress-strain relation by Eshelby (1957). A keen reader
on this topic may study the papers Santaoja (1989) and (2002). 
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