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Summary:  Optimal control of elastic vibrations by a set of actuators is determined using the finite element (FE) 
approach. The method combines two FE models, one standard model to represent the structure's dynamics and the second 
model consisting of fictitious static beams to solve the optimality equations for the problem.  
 
The Problem and the Solution Methodology 
Consider an elastic structure under the action of a set of discrete actuators. The structure is governed by the 
usual equation of motion in the form: 
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where M, C, and K are the symmetric mass, Rayleigh damping, and stiffness matrices respectively.  It is 
assumed that a sufficiently accurate FE model with m degrees of freedom (DOF) is available to simulate the 
structure's dynamics.  The actuators generate the control force vector )(tFa  with the number of independent 

components equal to an , the number of actuators. The vector of nodal forces in equation (1) is aBFF =  
where the known placement matrix B has dimension anm × . In general, the actuators are to move the 

structure in time ft  from an initial configuration 0)0( xx = , to a final configuration ff xtx =)( . The 

manoeuvre time ft  can be given, or may be treated as a variable of optimization. The objective is to 
determine the action of actuations that will minimize the performance index defined as: 
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where ,, vd QQ  and R  are symmetric positive definite weighting matrices, and Γ  is a positive constant.   
The above problem is usually handled by applying Pontryagin's Principle (PP) or by the parametric 
optimization approach. Both methodologies are computationally very intensive [1]. Typically, the PP's 
application leads to Riccati's coupled non-linear matrix equations the solution of which is 'the most time-
consuming part of any optimal control problem’ ([1], p. 109), and the existing procedures ‘do not universally 
guarantee stable and accurate computation’ ([2], p. 248).   
A different method, which appears to be numerically efficient, is presented here.  For this particular problem 
the following optimality equations can be derived from the PP[3]:  
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The initial conditions, 0x and 0x& ,  represent the disturbed, and the final conditions 0== ff xx &  the 

vibration-free structure. Equation (3) with these conditions constitutes the boundary value (BV) problem in 
the time domain that can formally be solved by using the FE methodology. This BV problem simplifies 
significantly if the weighing matrices are assumed to be linear combinations of the matrices M, C, and K, i.e.: 

CKMQd 321 ααα ++= , CKMQv 321 βββ ++= , and 1
321 ][ −++= CKMR γγγ  where ,, ii βα  and iγ  are 

non-negative optimization constants ( vd QQ ,  and R  will always be positive definite). Next, substituting 
ηΦ=x , where Φ  is the matrix of M-normalized eigenmodes and )(tη is the vector of modal variables, the 

optimality equation (3) is transformed into the decoupled equations in the form:  
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where iω  are ordered eigenfrequencies (i.e. sωωω ≤≤≤ ...0 21 ) and iξ  are modal damping ratios of the 

structure. The coefficients in equation (4) are known functions of the optimization parameters and iω (for 

example, iiiiiR ξωγωγγ 3
2

21
1 2ˆ ++=− ). Equation (4) can be solved mode by mode for a certain number of s 



initial modes (typically s<<m). Once it is solved, the optimal control force vector is determined from 
UBBBF TTT

a ΦΦ Φ= −1)( , where s components of vector U are defined by iiiiiiiU ηωηωξη 22 ++= &&& .  
A convenient method of solving equations (4) arises from analogy between these equation and the governing 
equations for a set of s fictitious independent static beam of length L resting on elastic foundation fik , and 
loaded by axial compressive force iP . Each beam is governed by: 
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where
y∂
∂='(.) , and Ly ≤≤0 . Two geometrical boundary conditions can arbitrarily be imposed on each end 

of the beam. Equations (4) and (5) become analogous if the beam's bending stiffness is selected such that 

iii REI ˆ≡  and if iiviiiii QRP ˆˆ)21(2 22 −−≡ ξω , and iidiiiif
QRk ˆˆ4 +≡ω . One can also assume that ftL = (where 

L  is in meters and ft is in seconds, for the SI unit system), then the variables of equation (4) relate to the 

variables of equation (5) as: yt ≡  and )()( yvt ii ≡η . Consequently, for equivalent boundary conditions all the 
modal functions and their derivatives can be determined in terms of the deflection, slope, and bending 
moment the fictitious static beams (for example, iiiiiiii vEIMU 22/ ωθξω ++= ).  
Besides the already mentioned structural FE model (any structural elements can be used in it), a second FE 
model, built of fictitious static 2-D beams, is needed to handle equations (5). The latter model can be solved 
using standard hermitian beam elements. Once the results of this model are known, the optimal actuator 
forces and the optimal response of the structure can be easily obtained.  Note that for verification, the forces 
calculated from the analogy can be applied to the structural model to determine its 'true' transient dynamic 
response. 
To illustrate the method active vibration control of an elastic aluminum fin modeled by two 2mm thick plates 
as shown in Figure 1 is presented. The dynamic model of the structure has about 2000 DOFs ( 2000≈m ). If 
the fin's vibrations are to be attenuated by two actuators (placed at nodes 2 and 12, for example) then two 
fictitious beams ( 2== ans ) are required to predict the optimal action of these actuators. Either the real 
disturbances can be considered for an open-loop control, or a somewhat arbitrarily initial configuration can 
be used to determine optimal gains for a close-loop control.   
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1. The structure controlled by two actuators (a), and the corresponding fictitious beams (b). 

 
For example, the analysis indicates that the actuators capable of producing about 180N are required if 

∞→ft  (for the time-invariant problem), and about 550N if the manoeuvre time is limited to 1s.  
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