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Summary. Optimal control of elastic vibrations by a set of actuators is determined using the finite element (FE)
approach. The method combines two FE models, one standard model to represent the structure's dynamics and the second
model consisting of fictitious static beams to solve the optimality equations for the problem.

The Problem and the Solution M ethodology

Consider an elastic structure under the action of a set of discrete actuators. The structure is governed by the
usual equation of motion in the form:

MX(t) + CX(t) + Kx(t) = F (t) @

where M, C, and K are the symmetric mass, Rayleigh damping, and stiffness matrices respectively. It is

assumed that a sufficiently accurate FE model with m degrees of freedom (DOF) is available to simulate the
structure's dynamics. The actuators generate the control force vector F_ (t) with the number of independent

components equal to n,, the number of actuators. The vector of nodal forces in equation (1) is F = BF,
where the known placement matrix B has dimension m” n,. In general, the actuators are to move the
structure in time t; from an initial configuration X(0)=Xx,, to a final configuration X(t{)=Xx; . The
manoeuvre time t¢ can be given, or may be treated as a variable of optimization. The objective is to

determine the action of actuations that will minimize the performance index defined as:
tf
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where Q,,Q,, and R are symmetric positive definite weighting matrices, and C isapositive constant.

The above problem is usually handled by applying Pontryagin's Principle (PP) or by the parametric
optimization approach. Both methodologies are computationally very intensive [1]. Typicaly, the PP's
application leads to Riccati's coupled non-linear matrix equations the solution of which is 'the most time-
consuming part of any optimal control problem’ ([1], p. 109), and the existing procedures* do not universally
guarantee stable and accurate computation’ ([2], p. 248).

A different method, which appears to be numerically efficient, is presented here. For this particular problem
the following optimality equations can be derived from the PP[3]:

MRMX + (2KRM - Q, - CRC)X + (KRK +Qq)x =0 ©)
The initial conditions, x,and X,, epresent the disturbed, and the final conditions x; =X; =0 the

vibrationfree structure. Equation (3) with these conditions constitutes the boundary value (BV) problem in
the time domain that can formally be solved by using the FE methodology. This BV problem simplifies

significantly if the weighing matrices are assumed to be linear combinations of the matricesM, C, andK, i.e.
Q =aM+a,K+aC, Q =b,M+b,K+b,C, and R=[g;M +g,K +g3C]"* where a,,b;, and g, are
non-negative optimization constants (Q,, Q, and R will always be positive definite). Next, substituting
x=Fh , where F isthe matrix of M-normalized eigenmodes and h(t) is the vector of modal variables, the
optimality equation (3) istransformed into the decoupled equationsin the form:

Rifii +[2w? (1- 2x)R; - Qv ki +(W{'R;; +Qiig)h; =0, i=l.s 4
where w; are ordered eigenfrequencies (i.e. 0£w; £w,...£wg) and X; are modal damping ratios of the
structure. The coefficients in egquation (4) are known functions of the optimization parameters and w; (for

example, I%'il =0 +gzvvi2 + 2g;w;X; ). Equation (4) can be solved mode by mode for a certain number of s



initial modes (typically s<<m). Once it is solved, the optimal control force vector is determined from
F, =(B'F F'B) *B'FU , where s components of vector U are defined by U; =H; +2x;wihi; +w?h, .

A convenient method of solving equations (4) arises from analogy between these equation and the governing
equations for a set of s fictitious independent static beam of length L resting on elastic foundation ks, and
loaded by axial compressiveforcePR, . Each beam is governed by:

EliVin“ + PiVi" + kﬁVi =0 i=1.s (5)

where () = ﬂy and O£ y£ L. Two geometrical boundary conditions can arbitrarily be imposed on each end
of the beam. Equations (4) and (5) become analogous if the beam's bending stiffness is selected such that
Eli © Ri andif B ° WZ(@1- 2x?)R; - Qyy, and K, ° wR;; +Qiig. One can also assume that L=t (where
L isin meters and t;isin seconds, for the Sl unit system), then the variables of equation (4) relate to the

variables of equation (5) as: t° y and h;(t) ° vi(y) . Consequently, for equivalent boundary conditions al the
modal functions and their derivatives can be determined in terms of the deflection, slope, and bending
moment the fictitious static beams (for example, U; = M;/ El; + 2wixigi +W2iv; )-

Besides the already mentioned structural FE model (any structural elements can be used in it), a second FE
model, built of fictitious static 2-D beams, is needed to handle equations (5). The latter model can be solved
using standard hermitian beam elements. Once the results of this model are known, the optimal actuator
forces and the optimal response of the structure can be easily obtained. Note that for verification, the forces
calculated from the analogy can be applied to the structural model to determine its 'true’ transient dynamic
response.

To illustrate the method active vibration control of an elastic aluminum fin modeled by two 2mm thick plates
as shown in Figure 1 is presented. The dynamic model of the structure has about 2000 DOFs (m » 2000). If
the fin's vibrations are to be attenuated by two actuators (placed at nodes 2 and 12, for example) then two
fictitious beams (s=n, =2) are required to predict the optimal action of these actuators. Either the real

disturbances can be considered for an open-loop control, or a somewhat arbitrarily initial configuration can
be used to determine optimal gains for acloseloop control.
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Figure 1. The structure controlled by two actuators (a), and the corresponding fictitious beams (b).

For example, the analysis indicates that the actuators capable of producing about 180N are required if
t; ® ¥ (for thetime-invariant problem), and about 550N if the manoeuvretimeislimited to 1s.
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