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Summary The paper presents a control method, which makes a hydraulic arm robustly track a desired joint space path at high speed. 
Optimisation for speed is performed for the worst expected dynamic condition. The reference trajectory is given as a parametric function 
in a manipulator’s joint space. Portions of the trajectory are online shrunk or stretched in time, to fully utilize capacity of the actuators.  
 

INTRODUCTION 
 
Many hydraulic manipulators work in unstructured surroundings at transporting loads, whose mass is not precisely 
known. In outdoor locations it is likely, that the desired path of the arm is input interactively by a human operator. The 
purpose of automatic control is then to follow the received trajectory closely, despite uncertainties in the arm’s 
dynamics. Since, in many cases, high speed of tracking does not affect quality of performance, it is also desirable to 
speed up tracking to save time. Much work has been done into optimising for speed joint space trajectories of general 
manipulators. Examples include [1], where optimisation of open-loop tracking control is performed, or [2], where a 
learning algorithm is used to speed up execution of repetitive tasks of industrial manipulators. In this paper an algorithm 
is presented, intended for hydraulic manipulators performing non-repetitive tasks. It takes into account feedback effects 
of control, and uncertainties in the manipulator’s equations of motion. An arbitrary reference trajectory is given, as a 
sequence of desired manipulator's configurations. The actual timing of the trajectory is then chosen such, that it fully 
utilizes the capacity of actuators, in the most disadvantageous dynamical case within uncertainty bounds.  
 

EQUATIONS OF MOTION 
 
Hydraulic manipulators are open chains of links, connected by prismatic or revolute joints. Each joint is actuated by a  
linear or rotary hydraulic motor. Assuming rigidity of links and joints and neglecting friction, dynamics of an arm, under 
the action of motor forces, is described by Lagrange equations of motion 
(1)  FHxD =+&&

where x is a vector of generalized coordinates of the arm (chosen here as piston displacements to simplify notation), 
 is a positive definite inertia matrix,  is a vector of gravitation, Coriolis and centrifugal forces, and F is a 

vector of forces exerted by hydraulic motors. It is further assumed, that each motor acts independently (has its own 
hydraulic fluid supply). Fluid flow to and from hydraulic motors is governed by servovalves, whose spool displacements 
are the control inputs to the system. It is assumed, that flow intensities across valves can be accurately modelled by the 
square-root law 
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uPCQ ∆= , where Q is the flow intensity, C is a valve dependent flow coefficient, ∆P is the pressure 
drop across the valve, and u is the spool displacement. The relation between piston forces and spool displacements is 
then given by 
(2)  gufF +=&

where u is the vector of all spool displacements, diagonal and positive definite matrix  and vector 
 represent properties of the hydraulic system, and ,  are vectors of pressures in motor chambers. 

Differentiating equation (1) and substituting equation (2) yields 
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(3)  RufDx += −1&&&

where  collects all remaining terms. Equation (3) is of third order, because of the inclusion of hydraulic 
system’s dynamics. It forms the basis for further control study. 
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CONTROL OUTLINE 

 
Problem formulation 
The reference trajectory is given as a parametric curve  in a manipulator’s joint space, where s is an arbitrary 
parameter. For the purposes of control it is unimportant, what is the particular choice of parameter.  However it is 
assumed, that  is sufficiently smooth in s, and takes only physically feasible values. Equations of motion (3) are 
not exactly known in the sense, that D, f and R might really differ from their nominal values. In particular, variations of 
D are mostly introduced by loads transported by the manipulator.  However, all uncertainties are bounded, and values of 
the bounds are known. Also, variations in values of parameters do not change the general positive definiteness 
properties of the matrices. There are also bounds on admissible values of spool displacements 
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chamber pressures cannot exceed pump and reservoir pressures. The purpose of control is to make the arm traverse 
 at the highest possible speed, while guaranteeing robustness of motion to uncertainties. The problem can be 

decomposed into two stages: first choosing a robust tracking control, then optimising the reference trajectory for speed, 
with respect to the chosen tracking strategy. 
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Robust tracking control 
Many techniques can be used to assure robust trajectory tracking. Here a discontinuous control technique, with a 
boundary layer to smooth the control signal, is adopted. By expanding equation (3) into the traditional first order state 
space form and using Lyapunov analysis, robust control can be derived of the general form 
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where ( )xPPf 21 ,,  and ( )xD  are nominal values of f and D respectively,  stands for all terms 
independent of ,  represents the position of the arm in state space with respect to chosen sliding 
surfaces, ε  is the width of the boundary layer, and ,  ,  denote derivatives with respect to time t.  The value of α 
in (5) is calculated, using the most disadvantageous possible dynamical case. Control (4,5) is valid, if 
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guaranteed to be always positive definite. Also for the technique to work, , , ,  and  must be measured in 
real-time or estimated. Control (4,5) robustly tracks a time dependent reference trajectory to an accuracy, dictated by ε.  
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Trajectory optimisation 
To speed up tracking  is chosen in such a way, that control (4,5) tracking , fully utilizes the capacity of 
actuators. Since  is given explicitly and is differentiable, its successive time derivatives are  
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If at any instant of time s,  and are given, values of ,  and  can be calculated from equations (6). On the 
basis of those, and the measured values of , , ,  and , vector 
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1P 2P x x& x&& vDf 1−  in equation (4) can be calculated. Since 

it determines the direction of control vector u, the maximum permissible value of α  can also be computed from 
equation (4). It is the value, which makes u  reach control bounds in the direction of  vDf 1− . Using equations (6),  
can now be computed from equation (5), as the greatest value (if  it exists) satisfying the inequality 
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for the most disadvantageous possible values of matrices. In summary, trajectory optimisation for speed is performed 
online. It is done by integrating in real-time  s,  and , and obtaining new  values of   from  equation (7). s& s&& s&&&
 

CONCLUSIONS 
 
A control algorithm for hydraulic manipulators is presented, which robustly tracks a given reference trajectory, while 
fully utilizing the capacity of actuators to maximize speed. It is however computationally expensive, and requires real-
time measurements of the full state of the system.  
 
Acknowledgement  
This work was supported by the State Committee for Scientific Research of Poland (KBN) under grant No. 5T07A 002 
23 for the years 2002-2004. 
 
References 
 
[1] Lin C.S., Chang P.R., and Luh J.Y.S.: Formulation and Optimization of Cubic Polynomial Joint Trajectories for Industrial Robots. IEEE Trans. 

Automatic Control 28(12):1066-1074, 1983. 
[2] Ma C.C.H., Qian T.W.T.: Rapid Tracking With Automatic Trajectory Optimization for Speed. ASME J. Dyn. Sys. Meas. and Control 121:697-702, 

1999.  


	INTRODUCTION
	EQUATIONS OF MOTION
	CONTROL OUTLINE
	CONCLUSIONS

