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Summary Certain vibro-impact problems can be conveniently solved by discontinuous transformations combined with averaging. We 
outline how this can be accomplished by examples: A self-excited friction oscillator with stop(s), and a particle on a vibrating plane.  

INTRODUCTION 

Vibro-impact systems are characterized by repeated collisions. Applications include devices to crush, grind, forge, drill, 
punch, tamp, pile, and cut a variety of objects, and vibrating machinery or structures with slips and stops [1]. The 
classical approach for solving problems in this area is “stitching”, i.e. integrating motions between impacts, and using 
kinematic impact conditions to switch solution intervals. For numerical simulation this is simple and effective. But for 
obtaining analytical solutions the method is elaborate, and possible only for the most simple systems [2] – and any 
additional non-linearity makes it very difficult to apply. For typical applications it is not necessary to obtain solutions at 
the level of detail provided by exact methods; of more interest may be condensed measures such as oscillation 
frequencies, stationary amplitudes, and the stability of motions. Thus approximate methods are both necessary and 
useful. Among these are the methods of equivalent linearisation [1], direct partition of motion [3], and averaging 
[4,5,6], each with their particular strengths. We demonstrate how special non-smooth transformations and non-standard 
averaging can be conveniently employed. Compared to classical “stitching”, this approach works even in the presence of 
additional nonlinearities, and provides analytical solutions free of switching conditions. By contrast to equivalent 
linearisation, it assumes a kinematic rather than kinetic impact formulation. Compared to the averaging approach described 
in [6] the non-smooth functions need not to eliminate the impacts completely, and are thus much easier to set up. 

AVERAGING FOR VIBRO-IMPACT SYSTEMS 

Standard averaging applies to systems dx/dϕ = εf(ϕ,x), ε<<1, x(ϕ)∈D⊂Rn. According to the averaging theorem [7], if f 
is 2π-periodic in ϕ and bounded and Lipschitz-continuous in x on D, then x is asymptotically close to the solution x1 of 
the averaged system dx1/dϕ = ε 1( , )ϕf x  on the scale ϕ = O(1/ε), where  denotes averaging over ϕ∈[0;2π]. With 
vibro-impact problems formulated with kinematic impact conditions, the inherent discontinuities in velocity precludes 
using standard averaging. However, a special form of the averaging theorem has been proven [5], that holds for systems 
with small (i.e. O(ε)) discontinuities in the state variables: 
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where f satisfies the same requirements as stated above, and x– and x+ are the states x immediately before and after the 
passage of ϕ through the value jπ. For that case the averaged system becomes: 
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To transform vibro-impact problems into the form (1) may not be trivial, not least since for near-elastic vibro-impact the 
discontinuity in velocity is not small. At least two transforms is required: One for transforming large discontinuities into 
small ones, and another for transforming the impact-free part of the equations of motion into the form (1)a. Below we 
outline how this can be accomplished for specific cases. 

EXAMPLES 

Self-excited friction oscillator with a one-sided stop 
Fig. 1 shows the classical “mass on moving belt” model [8], though, with a stop at the right restricting motions to s<∆ 
(the left stop is ignored for now). Without stop(s) this system is classical for illustrating friction-induced oscillations; for 
example, [9] uses averaging to derive stationary amplitudes for pure slip and stick-slip oscillations. With one- or two-
sided stops, it models rubbing objects with slipping parts, e.g., loosely mounted brake pads. A typical system is:  
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where h1 =2β – k1 + 3k3vb
2, h2 = –3k3vb, h3 = k3, the friction law is µ(vrel) = µssgn(vrel) – k1vrel + k3vrel

3, R is the coefficient 
of restitution, and β the viscous damping coefficient. Our main interest here is in the effect of impacts, so bs v< is 
assumed to avoid unnecessary complications connected with sticking motions ([9] considers stick-slip). 



To express (3) in the form (1) we first apply a discontinuous transformation of the dependent variable: s = ∆ – |z|, where 
the new variable z(t) changes sign at every impact, i.e. z+z–<0. In the z-variable every other oscillation of s and s will be 
mirrored, so that if R = 1 the velocity-discontinuity at impact is eliminated, while for near-elastic impacts the 
discontinuity will be small (Fig. 2). Specifically the impact condition becomes z+ – z– = –(R–1)z–, which is small for (R–
1)<<1, while the impact-free equation in (3) becomes 2 3

1 2 3sgn sgnz z z h z h z z h z+ = ∆ − + − for 0z ≠ . 
Next we employ a Van der Pol transformation z = Asinϕ, z = Acosϕ, where A = A(t) and ϕ = t + ψ(t). Assuming ∆,(1–R), 
h1,h2,h3 = O(ε)<<1, this yields a system of the form (1). Then it is straightforward to employ (2) for calculating the 
averaged system, and from that derive stationary values of oscillation amplitude A1∞ and frequency ω1∞ = 1 11ϕ ψ∞ ∞= + . 
The resulting expressions are very simple, and provide good agreement with numerical simulation for even quite large 
values of R–1 (but a small ∆ is required). In fact most of the (non-sticking) analytical results derived in [9] for the 
system without stop also hold for the system with one-sided stop – provided that β is replaced by an effective viscous 
damping βeff = β +(1–R)/π, and the low-speed slope h1 of the friction curve is replaced by h1eff = 2βeff – k1 + 3k3vb

2. For 
example, periodic motions with stationary amplitude A1∞ = (–4h1eff/(3h3))

1/2 exist and are stable for h1eff < 0, where the 
zero-solution is unstable. The frequency of stationary oscillations becomes ω1∞ = 1 – 2∆/(πA1∞) – 2h2A1∞ /(3π). 

... and with a two-sided stop 
With both stops (Fig. 1), the impact event in (3) changes to | s| = ∆, and the first equation holds for | s|<∆. This changes 
the character of solutions, so that the mirror transformation used with one stop will not reduce the discontinuity in 
velocity to O(ε). Instead we employ the transformation 1
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[5] for R = 1; here we use it for R≈1), which unfolds the sawtooth-like solution s to a polygon-like curve with small 
discontinuities in velocity (Fig. 3). Using z as a new independent variable, and the total energy E(z) as the new 
dependent variable, 21
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averaging by (2). Note that for motions hitting both stops the oscillation amplitude is fixed, so that with increased energy 
input only the frequency of oscillation can increase. The prediction of this frequency agrees quite well with numerical 
simulation for parameter values such as, e.g., R = 0.95 and ∆ = 0.5 (for the two-stop case ∆ is not assumed to be small). 

Particle on a vibrating plane in gravity 
Relative motions y(τ) of a particle bouncing on a vertically vibrating horizontal table are governed by y = –γ   + asinτ for 
y>0 and y+ = –Ry– for y = 0, where τ = Ωt, Ω>>g/l, γ =g/l/Ω2<<1 is the gravity to table acceleration ratio, a<<1 the table 
amplitude, and l a characteristic plate dimension. We first transform y = |z|, z+z–<0, to reduce the discontinuity in 
velocity, and then apply a Van der Pol like transformation z(τ) = A(τ)N(ϕ), ϕ(τ) = ωτ +ψ(τ) to obtain a system of the 
form (1). Here N defines the normalized exact solution for a particle bouncing with R = 1 on a table at rest, i.e. N is 
expressed as a second-order polynomial in ϕ (mod 2π), or as the integral of the sawtooth function dN/dϕ 
= 28 arcsin cosπ ϕ− . Stationary values of (A,ω,ψ) has been determined as the equilibriums for the averaged system (2). 
The extension of this procedure to vibro-impact on a vibrating elastic plates or membrane is currently investigated. 

CONCLUSION 

An extended form of averaging can be used for vibro-impact problems with nearly elastic collisions. This can be 
accomplished by discontinuous transformations, which converts large discontinuities in state variables into small ones. 
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Fig. 1 Self-excited friction-oscillator 
with stop(s)  

Fig. 2 Motions of friction-oscillator with 
one-sided stop  

Fig. 3 ... and with a two-sided stop 
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