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INTRODUCTION 
Rotary drilling systems used to drill deep boreholes for hydrocarbon exploration and production often experience 
severe torsional vibrations, called stick-slip, characterized by (i) sticking phases where the bit stops, and (ii) slipping 
phases where the angular velocity of the tool Ω increases up to two times the imposed angular velocity. This problem is 
particularly acute with drag bits, which consist of fixed blades or cutters mounted on the surface of a bit body. The 
main attributes of observed stick-slip oscillations are: 
Modelling of the stick-slip oscillations of drag bits is typically carried out by considering only the torsional vibration of 
the drill string and by reducing the bit-rock interface to an equivalent frictional contact with a velocity weakening 
friction coefficient. In this paper, we propose an alternative approach based on a discrete model of the drilling system 
and on a rate-independent description of the bit-rock interaction.  This model takes into consideration the axial and 
torsional vibration modes and their coupling through bit-rock interaction laws, which account for both frictional contact 
and cutting processes at the bit-rock interface. We show that this model experiences self-excited vibrations, which can 
degenerate into stick-slip oscillations or bit bouncing under certain conditions. 

 
MATHEMATICAL MODEL 

A rotary drilling structure consists essentially of a rig, a drill string, and a bit. The principal components of the drill 
string are the bottom hole assembly (BHA) composed mainly of heavy steel tubes to provide a large downward force 
on the bit, and a set of drill pipes made of thinner tubes. For the idealized drilling system under consideration, we 
assume that a constant upward force Ho and a constant angular velocity Ωo are applied by the rig on the drill string, that 
the borehole is vertical, and that there are no spurious lateral motions of the bit. 
The bit motion as well as the forces acting on the bit can in principle be calculated knowing the prescribed surface 
boundary conditions, the mechanical properties of the drill string and the bit-rock interaction law. For this analysis, we 
consider a discrete model of the drill string stripped to its essential elements, i.e., a point mass M and moment of inertia 
I to represent the BHA and a linear spring of torsional stiffness C to model the drillpipes, see Figure 1. 
Given the constant angular velocity Ωo and constant upward tension Ho imposed to the upper end of the torsional 
spring, we seek to determine the unknown bit response R. This response, which is generally a function of time t, 
consists of two sets of conjugated dynamic and kinematic quantities: the weight-on-bit W and the vertical bit velocity V 
on the one hand, and the torque-on-bit T and the angular bit velocity Ω on the other hand. We introduce the vertical 
position U and the angular position Φ of the bit. There is a steady-state (trivial) response of the bit, denoted as Ro={Wo, 
Vo, To, Ωo}, which is characterized by constant quantities Wo=Ws-Ho, Ω = Ωο, Φ=Ωο t-To/C where Ws is the submerged 
weight of the drillstring. The non-trivial response R can be determined in principle from the surface conditions and bit-
rock interface laws, together with the following torsional and axial equations of motion 
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We restrict consideration to an idealized drag bit of radius a, consisting of n identical radial blades regularly spaced by 
an angle equal to 2π/n, see Figure 1. Each blade is characterized by a sub-vertical cutting surface and a wearflat of 
constant width n orthogonal to the bit axis. The depth of cut per blade dn(t) is constant along the blade and identical for 
each blade; dn is given by 
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where tn(t) is the time required for the bit to rotate by an angle 2π/n to its current position at time t. The delay tn(t) is 
solution of 
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The nature of the bit-rock interaction depends on the bit axial and angular velocity.  
Consider first the "normal" case when V > 0 and Ω > 0. The drilling action of a drag bit consists of a pure cutting 
process in front of each blade and a frictional process along the wear flats. Both the weight-on-bit W and the torque-on-
bit T can thus be expressed as W = Wc + Wf, T = Tc + Tf where the subscript c denotes the cutting component, and f the 
frictional component. The forces associated with the cutting process are taken to be proportional to the depth of cut d 
while the frictional forces mobilized along the wearflats depend on a rate-independent friction coefficient µ. The 
cutting and frictional components of W and T are explicitly given by (Detournay & Defourny 1992)  
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where ε is the intrinsic specific energy (the amount of energy required to cut a unit volume of rock), ζ characterizes the 
inclination of the cutting force on the cutting face (typically, 0.6 0.8ζ≤ ≤ ), and σ is the magnitude of the normal stress 
acting across the wear flat interface (single cutter experiments show that σ ~ ε). The number γ globally characterizes the 
spatial orientation and distribution of the chamfers/wearflats. When the bit is moving upwards, we assume a complete 
loss of contact between the wearflat and the rock (Wf = Tf = 0).  
The case V = Ω =0 corresponds to the stick phase when the bit remains immobile. Since rotation of the drill pipes 
continues at the surface, the torque applied by the drillstring on to the BHA builds up until its magnitude is sufficient to 
overcome the reacting torque; the bit slips.  
It is convenient to formulate the model in a dimensionless form via a characteristic length L* and time t*. The scaled bit 
response depends on two sets of parameters: the control parameters Wo = W/ζεaL* and ωο = Ωο t; and the problem 
parameters characterizing the geometry and wear state of the bit, the rock, and the drilling structure, i.e., the number of 
blades n, and the lumped parameters β = µγζ, λ = nσ /ζεL*, and Ψ = ζεaI/MC. 
 

SELF-EXCITED OSCILLATIONS 
A linear stability analysis indicates that the trivial motion is unstable. Numerical solution of the system of equations 
confirms that any perturbations to the trivial motion cause the system to evolve towards one regime of self-excited axial 
and torsional vibrations.  Several such regimes exist, with some characterized by stick-slip oscillations or bit bouncing. 
It appears that most of these regimes of solutions are either periodic characterized by a limit cycle or quasi-periodic, i.e. 
they evolve extremely slowly compared to the characteristic time of the system.  Figure 2 illustrates the evolution of the 
bit angular velocity ω towards a limit cycle for two cases corresponding to β=0.3 and β=1 (lower and upper plot, 
repsectively). 
The root cause of the self-excitation is the cutting process which introduces, via the delayed axial position of the bit, a 
feedback into the equations of motion. Growth of the axial oscillations is hindered, however, by an intermittent "high-
frequency" loss of contact at the wearflat/rock interface, which is limiting the transfer of energy from the torsional to 
the axial motion. The coefficient β, which encapsulates the asymmetry between the axial and torsional interface laws, 
affects the ratio between the energy going into the cutting process and the energy dissipated in frictional contact. In 
fact, stick-slip oscillations take place only if β<1 
The results of an extensive series of numerical experiments can be summarized into the following general observations. 
 In the absence of bit bouncing, the system reaches strictly a limit cycle whenever β>1, or if stick-slip develops when 
β<1, see Figure 2. If there is no stick-slip and bit bouncing in the case β<1, the response reaches "rapidly" a quasi-
periodic regime, with the amplitude of the torsional oscillations increasing extremely slowly, presumably towards a 
limit cycle with stick-slip oscillations. The susceptibility to stick-slip motion increases with a reduction of the angular 
velocity ωo and with an increase of Wo, in accordance with field observations. 

             
Figure 1: (a) Drillstring model. (b) Section of bottom-hole   Figure 2: Angular velocity vs time (dimensionless) 
 

CONCLUSIONS 
The proposed model differs in significant ways from the standard approach used to analyze stick-slip torsional vibrations. 
We consider both axial and torsional vibrations of the bit, as well as the coupling between the two vibration modes through 
the bit-rock interaction laws. Second, the interface laws account both for cutting of the rock and for frictional contact 
between the cutter wearflats and the rock. Within the framework of the discrete model considered here in this paper, the 
evolution of the system is governed by two coupled delay differential equations, with the delay being part of the solution, and 
by discontinuous contact conditions. The proposed model qualitatively reproduces all the field observations (rate dependence 
of the mean torque, influence of the operating parameters Wo and ωo on the susceptibility to stick-slip). 
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