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Summary The main objective of this paper is to show the phenomenon of full vibrationsuppression of a simple two degree of freedom
pendulum system by interaction between self-excitation and parametric excitation. Using the averaging method general conditions for
full vibration suppression are derived for the linearized system with harmonic stiffness variation. These analytical results are compared
with results obtained from a numerical time integration of the linearized and ofthe original non-linear system.

MECHANICAL SYSTEM

We investigate a mechanical system consisting of two pendulums in a gravity field. Both pendulums are coupled by a linear
spring-element. Self-exciting forces are acting on one pendulum and may destabilize the resting coupled pendulum system
upon reaching a certain level. The effect of self-excitation is caused by some kind of mechanism that may be represented
by an equivalent negative damping coefficient. Well-known examples for such mechanisms are the constant flow around
a body with an aerodynamically unfavourable shape [1], or the contact of sliding surfaces with a velocity-dependent
friction coefficient [2]. Both mechanisms are being capableof generating self-sustained vibrations if a characteristic
parameter (e.g. flow velocity) reaches a critical value. Without counter measures both pendulums would start swinging
with increasing amplitudes until nonlinearities in the system cause the vibrations to enter a limit cycle.
Vibration suppression can be achieved by a periodic excitation of the pendulum’s pivot in the direction of gravity. It
is well known that a single pendulum can be stabilized in its inverted position by this method, which is based on a
periodic "modulation" of the gravity forces by the additional inertia forces acting on the pendulum due to the periodic
excitation. The combined effect of gravity and inertia results in a periodically changing restoring force, which appears
in the equation of motion as a parametric excitation in the displacement-proportional terms. The basic idea of creatinga
parametric stiffness excitation by a pivot excitation of a pendulum is adopted for the coupled pendulum system. But since
we consider a non-inverted 2-dof system under the effect of self-excitation the stabilization of this system is based ona
completely different principle, which is applied for the first time to pendulum systems.
For a coupled pendulum system with harmonic parametric excitation the equations of motion can be written as

I0,1ϕ̈1 + c1ϕ̇1 + m1g l1 sin ϕ1 + k12(ϕ1 − ϕ2) = 0,

I0,2ϕ̈2 + c2ϕ̇2 + m2(ÿ0 + g)l2 sinϕ2 + k12(ϕ2 − ϕ1) = 0,

ÿ0 = −η2A cos ηt,

and are hence represented by two coupled non-linear differential equations with a time-dependent periodic coefficient.
One pendulum is subject to self-excitation (negative damping coefficientc1) and the second pendulum is parametrically
excited (harmonic function̈y0) as shown in the following Fig. 1.
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Figure 1. Coupled pendulum system.



AREAS OF VIBRATION SUPPRESSION

To understand the basic behaviour of the original system we first investigate the linearized coupled system for small
oscillation amplitudesϕ1, ϕ2. The equations of motion remain coupled by the constant stiffness coefficientk12. The first
equation of motion simplifies to a differential equation with constant coefficients and the second one is equivalent to the
well-known Mathieu-equation.
The equations of motion are still quite complicated to be analyzed analytically. Approximate methods are good instru-
ments for understanding the complex behaviour of mechanical systems. It is convenient if the right-hand side of the set of
differential equations contains a small parameter. In a first step the system can be solved analytically if this parameter is
set to zero. For nonzero but small values of the parameter, solutions can be obtained by perturbation techniques, e.g. the
averaging method [3].
We introduce a small parameter for the damping coefficients and the amplitude of pivot excitation (parametric excitation).
Transforming the system to its normal form yields the modal frequenciesΩ1, Ω2. The method of averaging is used to
derivate analytically the necessary conditions for full vibration suppression for the linearized system and small excitation
amplitudes. These conditions show that the phenomenon of quenching is only possible near specific excitation frequencies
of the pendulums pivot, the so-called secondary parametricresonancesη0 = |Ω1 − Ω2|/N , where N is a natural number.
It is worth to note that the effect of quenching arises not only at a certain frequency valueη0, as it is the case for a dynamic
vibration absorbers, but there exists a whole quenching area.
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Figure 2. Stability body and chart obtained by numerical integration. Dark area indicates stable system.

The derived analytical conditions for vibration suppression are verified by numerical time integration of the linearized
system using Floquet theory. The boundary between stable and unstable motion is investigated for different pivot excita-
tion frequenciesη as a function of one or two system parameters and is represented by stability charts and stability bodies,
see Fig. 2. The quality of the analytical results for the linearized system are compared numerically with the original
non-linear system in the same way.

CONCLUSIONS

In general the self-excited pendulum causes the system to become unstable. Moving the pivot of a second pendulum in the
direction of gravity generates a parametric excitation – a harmonic stiffness variation. Coupling both pendulum only by a
linear stiffness element can cause the system to become dynamically stable. Although the first pendulum is self-excited
which would result in exponentially increasing vibration amplitudes, and also the second pendulum is oscillating due to
its pivot motion, the first pendulum is stabilized and gets torest. This vibration suppression is possible within an areanear
certain parametric resonance frequencies.
Analytical conditions for vibrations suppression are obtained by applying the averaging method on the linearized system.
With these formulas it is possible to predict values of system parameters to achieve the quenching effect.
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