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Summary The main objective of this paper is to show the phenomenon of full vibratippression of a simple two degree of freedom
pendulum system by interaction between self-excitation and parametiiatext Using the averaging method general conditions for
full vibration suppression are derived for the linearized system witmbaic stiffness variation. These analytical results are compared
with results obtained from a numerical time integration of the linearized attteasriginal non-linear system.

MECHANICAL SYSTEM

We investigate a mechanical system consisting of two pemaisiin a gravity field. Both pendulums are coupled by a linear
spring-element. Self-exciting forces are acting on onelpkmm and may destabilize the resting coupled pendulunesyst
upon reaching a certain level. The effect of self-excitaticaused by some kind of mechanism that may be represented
by an equivalent negative damping coefficient. Well-knowareples for such mechanisms are the constant flow around
a body with an aerodynamically unfavourable shape [1], erdbntact of sliding surfaces with a velocity-dependent
friction coefficient [2]. Both mechanisms are being capatfigienerating self-sustained vibrations if a characterist
parameter (e.g. flow velocity) reaches a critical value.halit counter measures both pendulums would start swinging
with increasing amplitudes until nonlinearities in theteys cause the vibrations to enter a limit cycle.

Vibration suppression can be achieved by a periodic exmitaif the pendulum’s pivot in the direction of gravity. It

is well known that a single pendulum can be stabilized inritseited position by this method, which is based on a
periodic "modulation” of the gravity forces by the additibrinertia forces acting on the pendulum due to the periodic
excitation. The combined effect of gravity and inertia tesin a periodically changing restoring force, which apgea

in the equation of motion as a parametric excitation in tlspldicement-proportional terms. The basic idea of creating
parametric stiffness excitation by a pivot excitation ofemgulum is adopted for the coupled pendulum system. Buésinc
we consider a non-inverted 2-dof system under the effecelbfexcitation the stabilization of this system is basedaon
completely different principle, which is applied for thestitime to pendulum systems.

For a coupled pendulum system with harmonic parametridagian the equations of motion can be written as

Toap1 + c191 +maglisingr + k12 (1 — @2) =0,
In2¢2 + capo + ma(ijo + g)lz sin gz + k12(p2 — 1) = 0,

jo = —n*Acosnt,

and are hence represented by two coupled non-linear diffateequations with a time-dependent periodic coefficient
One pendulum is subject to self-excitation (negative dagpoefficientc;) and the second pendulum is parametrically
excited (harmonic functiogjy) as shown in the following Fig. 1.
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Figure 1. Coupled pendulum system.



AREASOF VIBRATION SUPPRESSION

To understand the basic behaviour of the original system rgeifivestigate the linearized coupled system for small
oscillation amplitudes;, 5. The equations of motion remain coupled by the constarfiheif coefficienk;,. The first
equation of motion simplifies to a differential equationtwitbnstant coefficients and the second one is equivaleneto th
well-known Mathieu-equation.

The equations of motion are still quite complicated to beyaeal analytically. Approximate methods are good instru-
ments for understanding the complex behaviour of mechbsyséems. It is convenient if the right-hand side of the $et o
differential equations contains a small parameter. In &step the system can be solved analytically if this paranigte
set to zero. For nonzero but small values of the parameteitj@ts can be obtained by perturbation techniques, egy. th
averaging method [3].

We introduce a small parameter for the damping coefficiemislae amplitude of pivot excitation (parametric excitajio
Transforming the system to its normal form yields the modadjfiencies?,, ©2,. The method of averaging is used to
derivate analytically the necessary conditions for futiration suppression for the linearized system and smailagian
amplitudes. These conditions show that the phenomenoresfading is only possible near specific excitation frequesci
of the pendulums pivot, the so-called secondary parametsimnances, = |2; — Q2|/N, where N is a natural number.
It is worth to note that the effect of quenching arises noy @bk certain frequency valug, as it is the case for a dynamic
vibration absorbers, but there exists a whole quenchirg are
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Figure 2. Stability body and chart obtained by numerical integration. Dark areadtefistable system.

The derived analytical conditions for vibration suppressare verified by numerical time integration of the lineadz
system using Floquet theory. The boundary between stablemstable motion is investigated for different pivot eaeit
tion frequencieg as a function of one or two system parameters and is repegsbptstability charts and stability bodies,
see Fig. 2. The quality of the analytical results for the diieed system are compared numerically with the original
non-linear system in the same way.

CONCLUSIONS

In general the self-excited pendulum causes the systentamireunstable. Moving the pivot of a second pendulum in the
direction of gravity generates a parametric excitation -amrtonic stiffness variation. Coupling both pendulum onhab
linear stiffness element can cause the system to becomenilyally stable. Although the first pendulum is self-excited
which would result in exponentially increasing vibratiomglitudes, and also the second pendulum is oscillating due t
its pivot motion, the first pendulum is stabilized and getsetsi. This vibration suppression is possible within an aesa
certain parametric resonance frequencies.

Analytical conditions for vibrations suppression are aked by applying the averaging method on the linearizedesyst
With these formulas it is possible to predict values of sysparameters to achieve the quenching effect.
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