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POWER FLOW MODE THEORY

Generalised formulation of a dynamical system
      For generality, the dynamic equation for a generalized linear system with N degree-of-freedom is
represented in the matrix form

FfXKKXCXM ~~~)i(~~ i ==+++ te ωη&&& ,                                                       (1)

where F~ denotes excitation force vector, M is a real, symmetric and semi-positive definite mass matrix, K
represents a symmetric and semi-positive definite stiffness matrix, C  is a damping matrix which may be
non-symmetrical and K  is a real symmetric stiffness matrix relating to hysteretic damping, , where η

represents a loss factor. For solution te ωi~~ VX =& ,  Eq. (1) reduces to
VZf ~~~
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      In general, the impedance Z~  is non-symmetrical due to the non-symmetric nature of the damping
matrix C .

Power flow mode vector and its characteristic factor
      Detailed analysis developed in the paper shows the validity of the result

 =++ VKCCV ~)/2(~ TH ωη VffV ~~~~ HH + ,                                                 (3)
where H denotes the Hermitian transpose of the matrix. This allows the time-averaged input power to be
expressed as
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where, it is proved that, ωη /2/)( T KCCC ++=  is a real and symmetric matrix representing the total
damping matrix in the system. Based on matrix theory [1], the real symmetric matrix C  is decomposed
into

TΦΛΦC = ,                                                                            (5)
where Λ  is a real diagonal matrix of the eigenvalues jλ  of  the matrix C and Φ  is a corresponding matrix of

eigenvectors satisfying IΦΦΦΦ == TT (a unit matrix). We define jλ as the jth characteristic damping factor
and eigenvector jϕ  as the jth power flow mode vector of the system. These are linearly independent of each
other and they are chosen as a set of base vectors spanning the power flow space and therefore allowe a
complete description of the power flow of the system. The velocity vector V~  in the power flow space can be
decomposed into the form
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= ,                VΦq ~~ T= ,                                                    (6a,b)

where q~  is defined as a complex characteristic velocity vector. Therefore, the time-averaged power flow
expressed by Eq.(4) is now presented as
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      Eq. (6) provides a damping-based power mode expression of the power flow, in which 
2~

jj qλ /2
represents the energy dissipated by the jth power flow mode.  It is demonstrated by Eq.(7) that the total



power can be regarded as the power dissipated by all the N independent power flow modes with each being
related to only one characteristic velocity distribution and one characteristic damping factor (i.e., an
eigenvalue).

APPLICATIONS OF THE POWER FLOW MODE THEORY

Suspension system with two-degree-of-freedom
      Fig.1 illustrates a two mount suspension system which is used to demonstrate application of the
generalized power mode theory. Fig. 2 displays the total input power P compared to calculations using
other methods [2-4] and the energy dissipated by each power flow mode P1 and P2. Fig.3 shows the
influence of the system’s damping distribution on the total input power spectra.

   Fig.1 Suspension system        Fig.2  Total power and power flow modes       Fig.3  Power affected by system damping

Active vibration control of a human body-seat-boat-wave interaction system
      A second example involves a human sitting on a seat mounted by a passive / active suspension system
on an elastic vessel travelling in a sinusoidal seaway. In this example, the excitation is a distributed wave
load and the system’s damping matrix is non-symmetric due to different active damping inputs relating to
different control channels [5]. It is demonstrated that the proposed power flow mode approach successfully
analyses this complex distributed-lumped system. The effect of feedback control on the input power from
waves into the whole coupling system is investigated. More results and detailed analysis are provided in the
full paper.

CONCLUSIONS

      The developed generalised power flow mode theory demonstrates an effective approach to predict power
flow in a dynamical system based on the inherent characteristics of the system’s damping distribution. It
directly reveals the influence of damping characteristics on energy flow and transmission in the system using its
characteristic damping factor and the power flow mode vectors. This power flow mathematical model suggests
a design guideline to construct prescribed power flow characteristics through arrangement of the damping
distribution in the system.
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