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Summary A linear Dynamic Vibration Absorber (DVA) is applied to suppress the vibrations in a harmonically excited piecewise linear beam 
system. Both an undamped and a damped DVA are considered. Results of experiments and simulations are presented and show good 
resemblance. The undamped DVA is able to suppress the first harmonic resonance peak. The damped DVA guarantees vibration reduction over 
a wider frequency range. 
 

INTRODUCTION 
 

Several reasons can be given for the need to reduce vibrations in a mechanical system: e.g. avoiding damage, increasing the 
lifetime of the system, increasing comfort for human beings, and decreasing sound radiation. A Dynamic Vibration 
Absorber (DVA) is a well-known cheap, simple, passive controller for neutralising the vibrations of the structure to which it 
is attached. It consists of a mass-spring(-damper) system which parameters are tuned to obtain maximal vibration reduction. 
The application of DVA’s to linear systems has been investigated by many authors, see e.g. [5]. In the past piecewise linear 
systems with one degree of freedom (dof) were studied [6,7] inspired by the fact that in engineering practice many of such 
systems can be found. Examples are: 1) one-sided springs in folded solar array systems for space applications [4], 2) the 
periodic slackening of a mooring rope in off-shore applications [8] and 3) elastic stops in a pantograph carbon collector strip 
suspension [3]. In this paper a linear DVA will be applied to an archetype piecewise linear beam system to investigate if 
linear DVA’s are capable of reducing vibrations in this type of systems, see also [1]. 
 

EXPERIMENTAL SET-UP 
 

Figure 1 shows a schematic view of the experimental set-up. A steel beam is supported by two leaf springs at both ends. 
Below it a shorter clamped-clamped beam acts as a one-sided spring, which only is loaded if the middle of the main beam 
has downward deflection. Above the middle of the main beam a rotating mass unbalance realizes harmonic excitation. This 
unbalance is driven by a motor via a shaft with a flexible coupling. Left from the rotating mass unbalance the symmetric 
DVA is visible. It consists of two mass-leaf spring systems. The damped DVA is realised by addition of two dampers at the 
ends of the leaf springs.  
 

 
Figure 1 Schematic view of the experimental set-up 

 
NUMERICAL MODEL 

 
The linear part of the model without DVA is modelled using Euler beam elements resulting in a model with 111 dof. In order to 
decrease computational time while maintaining accuracy for the frequency range of interest a dynamic reduction method [2] 
based on free-interface eigenmodes and residual flexibility modes is applied to this model. The Ritz approximation of the 
displacement field consists of a linear combination of 3 free-interface eigenmodes (up to a cut-off frequency of 100 Hz) with 
corresponding generalised dof 321 ,, ppp  and 2 residual flexibility modes. The latter are defined for mq , the transversal 
displacement of the middle of the main beam, and abq , the transversal displacement at the position where the DVA is attached. 
The equations of motion of the reduced model are given by: 
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The reduced displacement column is given by [ ]T

amabm qqqpppp 321= , where amq  is the transversal 
displacement of the DVA (the DVA is modelled as a single dof mass-spring-damper system). Only the 4th element of the 
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reduced external force column Rf  is non-zero. It is a harmonic function with amplitude 2ωmr  ( m : mass unbalance, r : radius 
of mass unbalance, ω : radial rotational frequency) and excitation frequency πω 2/=f . The clamped-clamped beam is 
modelled as a mass-less one-sided spring causing piecewise linearity and resulting in stiffness matrix nlK  (the lowest 
eigenfrequency of this beam is high enough to justify this approximation). An important system parameter is the quotient of the 
stiffness of the one-sided spring and the stiffness associated with the first eigenmode, which is a measure for the amount of 
nonlinearity in the system. In this case this quotient is 4.6. 
 

RESULTS 
 

Figure 2 shows the maximum displacement of mq  for excitation frequencies between 0-60 Hz for 3 system configurations. 
 

 

Figure 2 Maximum displacement without DVA (a), with undamped DVA (b), and with damped DVA (c) against excitation 
frequency. Symbols refer to experimental results, solid and dotted lines to resp. stable and unstable numerical periodic solutions. 

 
Figure 2a: Piecewise linear beam system without DVA 
Harmonic resonance occurs near 19 Hz. Related to this resonance ½ and 1/3 subharmonic resonances occur at resp. 38 Hz and 
57 Hz and 2nd and 3rd superharmonic resonances at resp. 9.5 Hz and 6.5 Hz. The ¼ subharmonics near 26 Hz are related to the 3rd 
superharmonic resonance and the 1/3 and 1/5 subharmonics near 28 Hz and 47 Hz resp. to the 2nd superharmonic resonance. 
 
Figure 2b: Piecewise linear beam system with undamped DVA 
The eigenfrequency of the undamped DVA is tuned to 19 Hz, enabling the DVA to generate a counteracting force for the 
excitation force at this frequency. Indeed, at 19 Hz now an anti-resonance occurs. Instead, two new harmonic resonances 
occur near 15 Hz and 22 Hz. Related to these resonances ½ subharmonic resonances occur near resp. 30 Hz and 44 Hz. The 
other subharmonic and superharmonic resonances in figure 2b can also be identified. Finally, a quasi-periodic → locked → 
chaotic sequence is found near 35 Hz. 
 
Figure 2c: Piecewise linear beam system with damped DVA 
The optimally damped DVA reduces the vibrations over a wide frequency range. Next to the reduction of the harmonic and 
½ subharmonic resonance, the 1/3 subharmonic resonance even completely disappears. Unfortunately, the dampers used in 
the experiment could not be given the optimal damping values. Nevertheless, the trend in the experiments is correct.  
 

CONCLUSIONS 
 
The undamped linear DVA is able to suppress the first harmonic resonance of the piecewise linear system. The damped DVA 
guarantees vibration reduction over a wider frequency range. Experimental and numerical solutions corresponded well.  
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