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Summary A linear Dynamic Vibration Absorber (DVA) is applied to suppress the vibrations in a harmonically excited piecewise linear beam
system. Both an undamped and a damped DVA are considered. Results of experiments and simulations are presented and show good
resemblance. The undamped DVA is able to suppress the first harmonic resonance peak. The damped DVA guarantees vibration reduction over
a wider frequency range.

INTRODUCTION

Several reasons can be given for the need to reduce vibrations in a mechanical system: e.g. avoiding damage, increasing the
lifetime of the system, increasing comfort for human beings, and decreasing sound radiation. A Dynamic Vibration
Absorber (DVA) is a well-known cheap, simple, passive controller for neutralising the vibrations of the structure to which it
is attached. It consists of a mass-spring(-damper) system which parameters are tuned to obtain maximal vibration reduction.
The application of DVA’s to linear systems has been investigated by many authors, see e.g. [5]. In the past piecewise linear
systems with one degree of freedom (dof) were studied [6,7] inspired by the fact that in engineering practice many of such
systems can be found. Examples are: 1) one-sided springs in folded solar array systems for space applications [4], 2) the
periodic slackening of a mooring rope in off-shore applications [8] and 3) elastic stops in a pantograph carbon collector strip
suspension [3]. In this paper a linear DVA will be applied to an archetype piecewise linear beam system to investigate if
linear DVA’s are capable of reducing vibrations in this type of systems, see also [1].

EXPERIMENTAL SET-UP

Figure 1 shows a schematic view of the experimental set-up. A steel beam is supported by two leaf springs at both ends.
Below it a shorter clamped-clamped beam acts as a one-sided spring, which only is loaded if the middle of the main beam
has downward deflection. Above the middle of the main beam a rotating mass unbalance realizes harmonic excitation. This
unbalance is driven by a motor via a shaft with a flexible coupling. Left from the rotating mass unbalance the symmetric
DVA is visible. It consists of two mass-leaf spring systems. The damped DVA is realised by addition of two dampers at the

ends of the leaf springs.
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Figure 1 Schematic view of the experimental set-up

NUMERICAL MODEL

The linear part of the model without DVA is modelled using Euler beam elements resulting in a model with 111 dof. In order to
decrease computational time while maintaining accuracy for the frequency range of interest a dynamic reduction method [2]
based on free-interface eigenmodes and residual flexibility modes is applied to this model. The Ritz approximation of the
displacement field consists of a linear combination of 3 free-interface eigenmodes (up to a cut-off frequency of 100 Hz) with

corresponding generalised dof p,, p,, p; and 2 residual flexibility modes. The latter are defined for ¢, , the transversal
displacement of the middle of the main beam, and ¢, , the transversal displacement at the position where the DVA is attached.
The equations of motion of the reduced model are given by:

Mpp+Bpp+K;p=far where
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The reduced displacement column is given by p =[p1 Py Ps 4, 9 qam]T, where ¢, is the transversal
displacement of the DVA (the DVA is modelled as a single dof mass-spring-damper system). Only the 4™ element of the
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reduced external force column f is non-zero. It is a harmonic function with amplitude mraw* (m : mass unbalance, 7 : radius
of mass unbalance, ¢ : radial rotational frequency) and excitation frequency f = /27 . The clamped-clamped beam is

modelled as a mass-less one-sided spring causing piecewise linearity and resulting in stiffness matrix K, (the lowest
eigenfrequency of this beam is high enough to justify this approximation). An important system parameter is the quotient of the
stiffness of the one-sided spring and the stiffness associated with the first eigenmode, which is a measure for the amount of
nonlinearity in the system. In this case this quotient is 4.6.

RESULTS

Figure 2 shows the maximum displacement of ¢, for excitation frequencies between 0-60 Hz for 3 system configurations.
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Figure 2 Maximum displacement without DVA (a), with undamped DVA (b), and with damped DV A (c) against excitation
frequency. Symbols refer to experimental results, solid and dotted lines to resp. stable and unstable numerical periodic solutions.

Figure 2a: Piecewise linear beam system without DVA

Harmonic resonance occurs near 19 Hz. Related to this resonance %2 and 1/3 subharmonic resonances occur at resp. 38 Hz and
57 Hz and 2™ and 3™ superharmonic resonances at resp. 9.5 Hz and 6.5 Hz. The ¥4 subharmonics near 26 Hz are related to the 3™
superharmonic resonance and the 1/3 and 1/5 subharmonics near 28 Hz and 47 Hz resp. to the 2™ superharmonic resonance.

Figure 2b: Piecewise linear beam system with undamped DVA

The eigenfrequency of the undamped DVA is tuned to 19 Hz, enabling the DVA to generate a counteracting force for the
excitation force at this frequency. Indeed, at 19 Hz now an anti-resonance occurs. Instead, two new harmonic resonances
occur near 15 Hz and 22 Hz. Related to these resonances '2 subharmonic resonances occur near resp. 30 Hz and 44 Hz. The
other subharmonic and superharmonic resonances in figure 2b can also be identified. Finally, a quasi-periodic — locked —
chaotic sequence is found near 35 Hz.

Figure 2c: Piecewise linear beam system with damped DVA

The optimally damped DV A reduces the vibrations over a wide frequency range. Next to the reduction of the harmonic and
Y, subharmonic resonance, the 1/3 subharmonic resonance even completely disappears. Unfortunately, the dampers used in
the experiment could not be given the optimal damping values. Nevertheless, the trend in the experiments is correct.

CONCLUSIONS

The undamped linear DVA is able to suppress the first harmonic resonance of the piecewise linear system. The damped DVA
guarantees vibration reduction over a wider frequency range. Experimental and numerical solutions corresponded well.
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