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Summary A worm-like motion system in form of material points, connected by a spring is considered. It is shown that at presence of 
internal excitation and non-symmetric Coulomb dry friction a motion of the system with a constant "on the average" velocity is 
possible and this motion is stable. The expression for the velocity is obtained. A worm prototype applying the principles outlined 
above has been constructed. 
 

MATHEMATICAL MODEL 
 
Observing the locomotion of worms one recognizes a conversion of (mostly periodic) internally driven motions into 
change of external position (undulatory locomotion). In [1] the motion of three material points in a common straight 
line with the method of direct separation of motion [2] is considered. Left and right points are equipped with scales 
contacting the ground, and middle point is under action of harmonic external force. In this paper the motion of a system 
of two material points  and  with the masses , connected by a spring of stiffness  along an axis  is 
considered (Fig.1). 
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It is supposed that the points are under the action of a small non-
symmetric Coulomb dry frictional force ε , , 

depending on velocities ,  where  if 
,  if ,  if ; , 

. Excitation is carried out due to action of small 
internal forces G , . Such forces 
arise, for example, if the spring is a magnetizable elastic material 
by influence of an external magnetic field [2]. The equations of 
the motion are: 
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Fig.1. Model of the system 
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The system (1) is integrable on intervals where  is constant. However such approach does not give an opportunity 
of a qualitative description of motion as whole because the solutions "stick together" on intervals. Designating 

( )xF &

mc=2ω , and replacing 2
0022 ωε blxx −−→  we receive a system of equations, holding the old symbols: 
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To system (2) we apply procedure of averaging according to [4]. For this purpose we introduce variables: the velocity 
of the center of mass ( ) 221 xx && +=V  and a deviation of points relatively to the center of mass ( ) 212 xxz −= . Non-
disturbed system ( ε ) has two integrals: V  and the amplitude of oscillations relatively to the center of mass 

 is constant, , , 
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a ϕcos ϑϕ +Ω= t ω2=Ω ,  - is an arbitrary constant. Replacing ϑ ( ) 221 xx && +=V , 
, , where V  - slow variables, we receive system(2) in a standard form[4]: ( )ϑ+Ω ta cos=z ( )ϑ+Ω tΩa−=z& sin ϑ,, a
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We investigate the system (3) in a vicinity of the main resonance ν , . For this purpose we introduce a 
new slow variable ξ  and we exclude a fast variable ψ . After averaging on a fast variable ϕ  we obtain: 
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We are interested in an approximately steady motion as a single whole, therefore we seek for the solution V . Then 

from (4) we have  and 
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The result V  of the numerical integration of the exact 
system (1) is given in Fig.2. The following values of 
parameters were taken: ε ; ; ;  

, . The formula (5) gives the value for the 
velocity of center of mass V . Steady motion with the 
constant velocity (5) is physically feasible only in the event 
that it is stable. The characteristic polynomial of system in 
the variations, received of system (4), is given by expression 
(6). According to the Hurwitz criterion, all roots of the 
characteristic polynomial (6) have the negative real part for 
all values of parameters. 
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Fig.2. Velocity vs. time 
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So, the motion with a velocity V  is stable. 
 

CONCLUSIONS 
 
The above fulfilled investigations show: at presence of excitation and non-symmetrical Coulomb dry friction, motion of 
system with a constant "on the average" velocity V  is possible and this motion is stable. 0>
Worm prototype applying the principles outlined above has been constructed and proved positive. 
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