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Summary A worm-like motion system in form of material points, connected by a spring is considered. It is shown that at presence of
internal excitation and non-symmetric Coulomb dry friction a motion of the system with a constant "on the average" velocity is
possible and this motion is stable. The expression for the velocity is obtained. A worm prototype applying the principles outlined
above has been constructed.

MATHEMATICAL MODEL

Observing the locomotion of worms one recognizes a conversion of (mostly periodic) internally driven motions into
change of external position (undulatory locomotion). In [1] the motion of three material points in a common straight
line with the method of direct separation of motion [2] is considered. Left and right points are equipped with scales
contacting the ground, and middle point is under action of harmonic external force. In this paper the motion of a system
of two material points x, and x, with the masses m, connected by a spring of stiffness ¢ along an axis x is

considered (Fig.1).
It is supposed that the points are under the action of a small non-
symmetric Coulomb dry frictional force emF (x), g<<1,

depending on velocities x =% (i=1,2), where F(x)=F, if ~ G (f ) =

>0, F(x)=—F if x<0, F(x)=F, if x=0; -F <F,<F,, m AR

F >F >0. Excitation is carried out due to action of small

internal forces G(t)=em(b, +bcosy), v =vi. Such forces xl xE --.x
arise, for example, if the spring is a magnetizable elastic material Fig.1. Model of the system

by influence of an external magnetic field [2]. The equations of
the motion are:

mi, +c(x, —x, +1,)+& m(b, + bcosy ) +& mF(x,)

E

=0
1
m, +c(x, —x, —1,)—& m(b, + bcosy )+& mF(x,)=0. o

The system (1) is integrable on intervals where F (x) is constant. However such approach does not give an opportunity
of a qualitative description of motion as whole because the solutions "stick together" on intervals. Designating
o’ =c/m, and replacing x, > x, —1, —& b, /o’ we receive a system of equations, holding the old symbols:

i +0’(x, —x,)=—e[F(%)+bcosy],

%, +0%(x, = x,)=—¢[F(x,) - bcosy . @

To system (2) we apply procedure of averaging according to [4]. For this purpose we introduce variables: the velocity
of the center of mass V:()'cl + X, )/2 and a deviation of points relatively to the center of mass z:(x2 - X, )/2 Non-

disturbed system (& =0) has two integrals: V' =const and the amplitude of oscillations relatively to the center of mass
a 1is constant, z=acosp, @=Qr+9, Q:\/Eco , 3 - is an arbitrary constant. Replacing V:()'cl + X, )/2 ,
z=a cos(Qt + 8) , z=—al) sin(Qt + S) , where V', a,3 - slow variables, we receive system(2) in a standard form[4]:

14 :—% [F(V+aQsin(p)+ F(V—aQsin(p)],

a :—%sin(p [F(V+aQsin(p)—F(V—aQsin(p)+ 2bcosw], 3)
€
2aQ)

0=Q- cos@® [F(V+aQsin(p)—F(V—aQsin(p)+2bcosw],

Y =V.
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We investigate the system (3) in a vicinity of the main resonance v=Q+¢ A, A=0 . For this purpose we introduce a
new slow variable £ =y —¢ and we exclude a fast variable y . After averaging on a fast variable ¢ we obtain:

. |-¢ uarcsinL—F’_F* if 0V <aQl,
V= T aQ) 2

—-eF  ifVz2aQ,

2
e EAE LV bane| o<y <aq,
. Q T a Q2
a= “4)
b
£ ——sin ifVzaQ,
Soins i
. b
=¢ cosg + A |.
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We are interested in an approximately steady motion as a single whole, therefore we seek for the solution ¥ =0 . Then

from (4) we have a=£ =0 and

V:sin(l)\/i_ (F +F.) cos* ® 4

5 a=———,
b -sin
Al V4 ’ Q-sin®

)

& = arccos —A\/1—4(F+F*)2COSZCD o=C.
- lA| n’b’ © 2 F+F

The result V() of the numerical integration of the exact

system (1) is given in Fig.2. The following values of : !
parameters were taken: €=0.01; F =1; F =2; b=10; \

0.2
A=10, o=1. The formula (5) gives the value for the

velocity of center of mass V' =0.24. Steady motion with the

constant velocity (5) is physically feasible only in the event 0.1 p-----

that it is stable. The characteristic polynomial of system in

the variations, received of system (4), is given by expression 0
(6). According to the Hurwitz criterion, all roots of the a 200 400  BOO 800
characteristic polynomial (6) have the negative real part for Fig.2. Velocity vs. time

all values of parameters.
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So, the motion with a velocity V' is stable.
CONCLUSIONS

The above fulfilled investigations show: at presence of excitation and non-symmetrical Coulomb dry friction, motion of
system with a constant "on the average" velocity ¥ > 0 is possible and this motion is stable.
Worm prototype applying the principles outlined above has been constructed and proved positive.
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