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Summary Rayleigh has proved a theorem that an additional constraint cannot reduce any of the natural frequencies of an elastic vibration
system. Since linear free vibration and linear stability problems are analogous to each other mathematically, both lead to eigenvalue

problems involving linear operators, the question arises, whether there exist a counterexample to Rayleigh’s theorem, because to a similar

theorem on the critical loads, there are counterexamples. In this paper, examples of vibrating systems will be shown that contradict

Rayleigh’s theorem. So the known form of Rayleigh’s theorem might need correction.

PROBLEM DESCRIPTION

There is a widely-held opinion in engineering that the reinforcement of an elastic structure, either by an increase of the

stiffness or by the provision of additional constraints increases both its critical loads and natural frequencies. This view,

however, has not proved to be correct in all aspects.

The general validity of this opinion was contravened first in the case of the effect of stiffening and additional restraints

on the buckling load [4]. The effect of additional restraint on the natural frequencies of a conservative vibration system was

investigated by Rayleigh [2]. He proved a theorem that an additional constraint or an increase in the stiffness cannot reduce

any of the natural frequencies. This theorem is generally accepted and incorporated in all the most important textbooks on

the subject.

In this paper, it will be shown that Rayleigh’s theorem on the natural frequency increasing effect of constraints or stiffening

might need correction. Examples of vibrating systems will be presented in which, paradoxically, an additional restraint

decreases the corresponding natural frequencies that contradicts Rayleigh’s more than hundred-year-old theorem.

EFFECT OF ADDITIONAL RESTRAINT UPON THE ELASTIC CRITICAL LOAD

Let us assume (a) the system has a potential; (b) only bifurcation problems are considered so that the critical load factor

means the load factor associated with the point of bifurcation; (c) the material of the structure is linearly elastic; (d) the

displacements are small. Under these conditions, the following theorems hold [4].

THEOREM 1. Additional restraint on any component of displacement, which is found in the eigenvalue problem of

buckling of a structure, cannot decrease the minimum positive critical load factor.

THEOREM 2. Additional restraint on any component of displacement, which is not found in the eigenvalue problem of

buckling of a structure, can decrease the minimum positive critical load factor.

Example

To illustrate Theorem 2, consider the structure in Fig. 1, composed of weightless rigid members of length l and weightless

elastic springs with rigidities c1, c2, c, loaded by a vertical force P at its upper joint, but mass m is not taken into

consideration. The critical load of this structure is
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Expression (1) shows that with an increase of the spring rigidity c2, the critical load decreases.

Fig. 1. The structure prior to and after displacements
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EFFECT OF ADDITIONAL RESTRAINT UPON THE NATURAL FREQUENCIES

Consider a version of Rayleigh’s theorem on constrained vibration as formulated by Renton [3]:

THEOREM 3. 
“ S u p p o s e t h a t t h e n a t u r a l f r e q u e n c i e s o f a s t r u c t u r e a r e ω

1 ≤ ω
2 ≤ . … ≤ ω

r ≤ … ≤ ωn. If one constraint is

imposed on the structure, then the new natural frequencies of the structure, also arranged in order, will be such that the

rth, ωr’, will lie between the rth and the (r + 1)th original frequencies, or ωr ≤ ωr’ ≤ ωr+1.”

Rayleigh’s theorem on stiffening can be stated as follows.

THEOREM 4. If the system stiffens, every natural frequency increases (or remains the same).

Here, the term ‘constraint’ refers to an inhibition of one of the degrees of freedom of the structure; that is, the constraint

removes that degree of freedom altogether. Stiffening does not mean simply an increase in the rigidity of one or more

springs. According to Courant and Hilbert [1]: “Stiffening of the system means change to a system whose kinetic energy is

the same but whose potential energy is greater for the same values of the coordinates.” Thus, if a spring rigidity is increased,

but as a consequence, the potential energy decreases, and so some of the natural frequencies decrease, then this fact does not

contradict Theorem 4. However, if at least one natural frequency decreases by introducing an additional constraint, then

Theorem 3 in the present form is not right.

These theorems are obviously valid if the potential energy means strain energy. However, there are vibration problems

where static external forces are in the system, so these forces also contribute to the potential. Such a problem is, for instance,

where an axial compression force P is on a vibrating beam, which combines two problems: (a) buckling of a beam with no

vibration, (b) vibration of an unloaded beam. If the rth vibration and buckling modes are identical, then
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where Pr,cr is the rth critical force, ωr is the rth natural frequency of the beam loaded by P, ωr0 is the rth natural

frequency of the beam not loaded by P [5]. Thus, if additional restraint reduces the critical load then at the same time

reduces the corresponding natural frequency.

Example

In Fig. 1, the structure with a mass m at its middle joint forms a two-degree-of-freedom vibration system. Let us suppose

that P < Pcr is a constant compression force, and c1 > c. The critical force Pcr is given by (1).

(a) An increase in the stiffness of an already existing restraint. The system has two natural frequencies:
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Relationship (3a) has the same form as (2). If the spring rigidity c2 is increased then ω2 increases, but ω1 decreases, that

is, ω1’ < ω1 < ω2 < ω2’, that seemingly contradicts Theorem 4. In fact, however, there is no contradiction because there

are displacement coordinates for which the potential energy can decrease with an increase in c2.

(b) An addition of a constraint to the structure. First, let c2 = 0. This case means that we have a two-degree-of-freedom

vibration system where the external force P does not play any role even it is present. In this case we have:
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Then, let c2 = ∞. The modified system obtained is a one-degree-of-freedom system where the vertical vibration mode

ceases to exist. From (3a), we obtain for the modified system:
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that is, ω1’ < ω1 < ω2, that contradicts Theorem 3.

CONCLUSIONS

From the results presented here we can conclude that Rayleigh’s theorem is valid if additional restraints have no effect on

pre-vibration displacements, or there are no pre-vibration displacements, but additional restraints on pre-vibration

displacements can decrease the natural frequencies. The latter case can happen if external static forces are in the system.
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