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Summary Damped nonlinear normal modes in a linear oscillator coupled to small damped strongly nonlinear attachment are 
considered  by combining the invariant manifold approach and multiple scales expansion. Three distinct time scales correspond to 
fast vibrations, evolution of the system towards the nonlinear normal mode (NNM) and time evolution of the invariant manifold.  
Cusp catastrophe scenario is proved to be the only possible for the invariant manifold in time – amplitude – damping  domain.   

 
Introduction 
Recently it has been demonstrated that various systems comprised of linear substructures and strongly nonlinear 
attachments demonstrate localization and irreversible transient transfer (pumping) of energy to prescribed fragments of 
structure dependent on initial conditions and external forcing [1-4]. Addition of relatively small and spatially localized 
attachment leads to essential changes in the properties of the whole system. Unlike common linear and weakly 
nonlinear systems, systems with strongly nonlinear elements are able to react efficiently on the amplitude characteristics 
of the external forcing in a wide range of frequencies [1,3,4].  
The systems under consideration give rise to a new concept of nonlinear energy sink (NES). It was demonstrated [2,4] 
that the possibility of the energy pumping/resonance capture phenomenon in non-conservative systems can be 
understood and explained by studying the energy dependence of the non- linear undamped free periodic solutions (non-
linear normal modes (NNM,[5-7])) of the corresponding conservative system that is obtained when all damping forces 
are eliminated.  However, that any practical implementation of the energy pumping mechanism requires more detailed 
understanding of the dynamics of real damped system. Time dependence is crucial feature of the invariant manifolds if 
the damping is present. Moreover, it will be demonstrated that the topological structure of the invariant manifold is 
strongly time-dependent and can undergo bifurcations depending on the value of the damping coefficients. 

 
Description of the model and its analysis 
Let us consider the following system, which consists of linear oscillator and small strongly nonlinear attachment , 
described by the set of equations: 
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where � <<1 is a small parameter which establishes the order of magnitude for coupling, damping and mass of the 
nonlinear attachment. Coupling terms are considered to be symmetric and therefore functions P and Q are presented in a 
form of even and odd polynomials respectively: 
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Standard multiple scales expansion with respect to parameter �   demonstrates that in the conditions of 1:1 resonance the 
dynamical flow is attracted to nonlinear normal mode. The second-order approximation leads to exactly solvable 

equation for time evolution of the invariant manifold of this NNM ( t2
2 	� � , 
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It may be proved that, despite large number of coefficients and complicated structure of (4), the topology of the 
invariant manifold is surprisingly simple: 



1) if q0>1, then Z(� 2) decreases monotonously; 
2)  if q0<1 and at least one of qj, j>0, is positive, then for sufficiently small 

�
j there exist two points with divergent 

derivative 
�
Z/

� � 2, giving rise to three branches of Z(� 2)). It is easy to conclude that two of these branches will 
be stable and one – unstable. As any of 

�
j grows, these zeros will eventually disappear by mechanism of trivial 

cusp catastrophe. 
As the topology of the invariant manifold is similar for all possible choices of the coefficients qj and 

�
j (with restrictions 

formulated above), it is possible to restrict the investigation by the simplest example. Namely, we take q1=8, qj=0 for all 
j � 1 and 

�
0=

�
, 

�
j=0 for all j� 0.  The shape of the surface Z(� 2,

�
) for � =2.5 is presented at Fig. 1. In order to illustrate the 

effect of the bifurcations of the invariant manifold on the dynamics of the system under consideration direct numerical 
simulation of  (1) is performed for the following parameters: � =0.064, q1=8, 

�
0=0.2 (Fig.2).  

 

                                        

 

 
Fig. 1. Shape of the invariant manifold for         Fig. 2. Simulation of System (1) for the set of parameters                     
the set of parameters q1=8, � =2.5, 0<� <1.                        mentioned above, � =0.2, y1(0)=0 dy1/dt(0)=0.35, y2(0)=0,  

                    dy2/dt(0)=0 (� � � � � � �  - y1(t), ———— - y2(t)).  
 
The picture clearly demonstrates that at about t=20 the trajectory of the system attains the regime of nonlinear normal 
mode, characterized by simultaneous behavior of y1(t) and y2(t). However at about t=50-60 this regime is broken down 
with rather abrupt decrease of both amplitudes. The phase trajectory of the coupled system completely leaves (“jumps 
out” from) the resonance manifold and the nonlinear normal mode is totally destroyed as a result of passage through the 
bifurcation.  

 
Conclusive remarks 
We have considered the dynamics of linear oscillator with strongly nonlinear attachment. The above results demonstrate 
that in the conditions of 1:1 resonance the system under consideration evolutes according to three distinct time scales: 

- scale � 0 corresponds to the fast vibrations of the system with frequency close to unity; 
- scale � 1 corresponds to evolution of the slow variables towards the regime of nonlinear normal 

mode; 
- scale � 2 corresponds to evolution of the invariant manifold of the NNM. 

Time evolution of the invariant manifold may be accompanied by two bifurcations, if the linear frequency of coupling 
spring is small enough. In this case the bifurcations disappear with increase of the damping coefficient via cusp 
catastrophe.  
Presence of bifurcations of the invariant manifold has rather essential effect on the dynamics of the system. Namely, 
passage through the bifurcation is able to destroy the regime of nonlinear normal mode and facilitate the energy 
dissipation. The latter observation leads to certain clue for practical design of the nonlinear energy sinks – the damping 
coefficient should be chosen in order to ensure the possibility for bifurcations of the NNM invariant manifold. Failure to 
do so will result in a loss of NES ability to dissipate the energy of vibrations. 
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