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SummaryDamped nonlinear normal modes in a linear oscillamupled to small damped strongly nonlinear atrzaft are
considered by combining the invariant manifold raggh and multiple scales expansion. Three distimet scales correspond to
fast vibrations, evolution of the system towards tfonlinear normal mode (NNM) and time evolutionttoé invariant manifold.
Cusp catastrophe scenario is proved to be thepmdyible for the invariant manifold in time — anydie — damping domain.

Introduction

Recently it has been demonstrated that variousmgstcomprised of linear substructures and strongiylinear
attachments demonstrate localization and irreviersibnsient transfer (pumping) of energy to prigsd fragments of
structure dependent on initial conditions and ewkforcing [1-4]. Addition of relatively small angpatially localized
attachment leads to essential changes in the piepeasf the whole system. Unlike common linear amebkly
nonlinear systems, systems with strongly nonlirdaments are able to react efficiently on the annéi characteristics
of the external forcing in a wide range of frequendl,3,4].

The systems under consideration give rise to acwwept of nonlinear energy sink (NES). It was destated [2,4]
that the possibility of the energy pumping/resomarm@pture phenomenon in non-conservative systemsbea
understood and explained by studying the energgmignce of the non- linear undamped free periadigiens (non-
linear normal modes (NNM,[5-7])) of the corresporgiiconservative system that is obtained when afipitag forces
are eliminated. However, that any practical imparation of the energy pumping mechanism requirese rdetailed
understanding of the dynamics of real damped sysiéme dependence is crucial feature of the invanmanifolds if
the damping is present. Moreover, it will be deniated that the topological structure of the ingatimanifold is
strongly time-dependent and can undergo bifurcati@pending on the value of the damping coeffisient

Description of the model and itsanalysis
Let us consider the following system, which corssist linear oscillator and small strongly nonlinedtachment ,
described by the set of equations:
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wheree<<1 is a small parameter which establishes the order of magniudmdipling, damping and mass of the
nonlinear attachment. Coupling terms are considered to be syimaredrtherefore functions P and Q are presented in a
form of even and odd polynomials respectively:
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with at least one df; and g/is nonzero. Changes of variablew=(y,+¢y,)/(1+¢), w=y,-y,, 6=1/y

7=e", V=2, W=w, g expit) =V+iV,p,expit) =W+iW reduce system (1) to the following form:
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Standard multiple scales expansion with respepatametely demonstrates that in the conditions of 1:1 resoadhe
dynamical flow is attracted to nonlinear normal modhe second-order approximation leads to exasilyable
equation for time evolution of  the invariant matdfo of  this NNM (r, = 2%,
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It may be proved that, despite large number of faiefits and complicated structure of (4), the fogy of the
invariant manifold is surprisingly simple:



1) if go>1, then Z{,) decreases monotonously;

2) if g<1 and at least one of, §~0, is positive, then for sufficiently small there exist two points with divergent
derivativedZ/or,, giving rise to three branches oftgj. It is easy to conclude that two of these braschill
be stable and one — unstable. As any; gfrows, these zeros will eventually disappear byghaaism of trivial
cusp catastrophe.

As the topology of the invariant manifold is sinnifar all possible choices of the coefficientsagd); (with restrictions
formulated above), it is possible to restrict theeistigation by the simplest example. Namely, we §=8, g=0 for all

j#1 andAg=A, ;=0 for all 0. The shape of the surfaceZX) for 6=2.5 is presented at Fig. 1. In order to illustrtie
effect of the bifurcations of the invariant manifain the dynamics of the system under considerati@tt numerical
simulation of (1) is performed for the followingameterse=0.064, g=8,1,=0.2 (Fig.2).
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Fig. 1 Shape of the invariant manifold for Fig. 2. Simulation of System (1) for the set of parameters
the set of parameterg=g, 6=2.5, 0<i<1. mentioned abové=0.2, y;(0)=0 dy;/dt(0)=0.35, y(0)=0,
dydt(0)=0 000000 - yy(t), ———— - ¥(t)).

The picture clearly demonstrates that at about th2Qtrajectory of the system attains the regimeaasflinear normal
mode, characterized by simultaneous behavior®f &nd y(t). However at about t=50-60 this regime is broklemn
with rather abrupt decrease of both amplitudes. ghrese trajectory of the coupled system compldeglyes (“jumps
out” from) the resonance manifold and the nonline@amal mode is totally destroyed as a result espge through the
bifurcation.

Conclusive remarks
We have considered the dynamics of linear oscillaith strongly nonlinear attachment. The abovelltsslemonstrate
that in the conditions of 1:1 resonance the systeder consideration evolutes according to threinditime scales:

- scalertg corresponds to the fast vibrations of the systdtim frequency close to unity;

- scalet; corresponds to evolution of the slow variablesas the regime of nonlinear normal

mode;

- scaler, corresponds to evolution of the invariant manifofdhe NNM.
Time evolution of the invariant manifold may be aepanied by two bifurcations, if the linear freqogmf coupling
spring is small enough. In this case the bifurcetialisappear with increase of the damping coefficiea cusp
catastrophe.
Presence of bifurcations of the invariant manifolts rather essential effect on the dynamics ofylséem. Namely,
passage through the bifurcation is able to destheyregime of nonlinear normal mode and facilitdte energy
dissipation. The latter observation leads to certhie for practical design of the nonlinear enesimks — the damping
coefficient should be chosen in order to ensurgtssibility for bifurcations of the NNM invariamanifold. Failure to
do so will result in a loss of NES ability to disate the energy of vibrations.
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