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THE EXTENDED SUMMARY 

 
An implicit family of semi-analytical integration methods, referred to as multi-step transversal linearization 
(MTL), is proposed for accurate, efficient and numerically stable integration of non-linear oscillators of interest 
in structural dynamics. The presently developed method is a multi-step extension and further generalization of 
the locally transversal linearization (LTL) method proposed earlier by the author (Roy 2001). The MTL-based 
linearization is achieved through a non-unique replacement of the nonlinear part of the vector field by a 
conditionally linear interpolating expansion of known accuracy, whose coefficients contain the discretized state 
variables defined at a set of grid points. For further illustration, consider the following system of n second order 
non linear ordinary differential equat ons (ODE-s): - i
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In the above equations, [  and ]C [ ]K  are the damping and stiffness matrices respectively, 

 is a non-linear vector function of the first two arguments, },...,|),,({),,( )( ntXXQtXXQ j= && 1j = { })(tF  is 
the externally applied force vector and { }, X { }X&  ∈  are respectively the displacement and velocity vectors. 

Let the initial condition vector be denoted as 
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be a sub-interval of the time axis and let it be ordered into 
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p smaller intervals as t < < …< =T . The time 

step size =  is presently taken to be constant for convenience of further discussion. It is intended 
to derive the linearized ODE-s such that the linearized and non-linear vector fields remain identical at all the 

 grid points, viz. t . Let the non-linear and linearized flows, as parameterized by time , be 

denoted by 
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φ  and tφ  respectively. The non-linear flow, tφ  may be topologically viewed as a  
diffeomorphism on the associated (compact) manifold M:
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provided that the vector field is autonomous (an n-

dimensional non-autonomous field is equivalent to an n+1-dimensional autonomous field). The set of all such 
 diffeomorphisms φ , under the operation of composition ‘ ’ form a group, G . Such compositions 

may be interpreted via R- and Z-group actions, defined as: 
o φ

,: ttGR φφ →→  
jtjGZ φφ →→ : (R is the real line and Z is the set of integers)       (2) 

Now, the MTL method attempts to derive a system of linearized ODE-s with solutions having identical Z -action 
for any , , and very similar R-action jt Zj∈ Rt ∈∀  as the solutions of the nonlinear ODE-s. Towards this, 

the j-the component of the non-linear vector term is approximated as: ), tX&,(XQ
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where the basis set { },...,0| pkk =φ , indexed on , must satisfy 1I kllk t δφ =)(  (δ  is the Kronecker 

delta),  and . Interpolating Lagrange polynomials (ILP-s), 

distributed approximating functionals (DAF-s) (Wei et al 1998) and interpolating wavelets or interpolets (Saito 
and Beylkin 1993) are a few possible choices for {
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φ . An appropriate choice of the basis set may be dictated 

by the physics of the problem. Thus the MTL-based linearized form of equation (1) valid over  is: 1I
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where the first term on the RHS may be interpreted as a conditionally known forcing function. Since an exact 
solution of the above-linearized system is available, the formal accuracy of the MTL method as a function of the 
time step-size depends only the error of replacement of  with  as in equation (3). Now, 
by setting up the variational equations corresponding to equations (1) and (4), it may be shown that the tangent 
spaces of the non-linear and linearized systems are transversal almost everywhere in the associated phase space, 
and, in particular, at the grid points. Thus the discretized solution vector {  may be 
interpreted as points of transversal intersections between the solutions of equations (1) and (4) at the grid points. 
Figure 1 provides a 1-dimensional schematic representation of the concept for p = 4. It may be shown that such 
intersections are indeed possible if the solution vector of equation (4) satisfies: 
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where  denotes the linearized solution vector 

(which is an explicitly known function of { ) at t
},...,1,0|),,(),,,({ pktXXYYtXXYY lkkllkkl === &&&&

}, kk XX &
lt= . Equation (5) constitutes a set of 2p algebraic 

equations in as many unknowns {  and may be solved using a Newton-Raphson or a non-
linear iterative solver. 
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Presently, a limited numerical illustration of the method is provided for a few single- and two-degree-of-freedom 
nonlinear oscillators in their periodic and chaotic regimes. Figure 2 shows simulated periodic trajectories of a 
sinusoidally driven hardening Duffing oscillator (with a cubic non-linear term) obtained via MTL and Runge-
Kutta (sixth order) schemes under different time step-sizes. The relatively superior numerical stability and 
convergence of the MTL method even under higher time-step sizes is amply clear. In particular, it is also 
observed that the Runge-Kutta method leads to overflows for h = 0.21. The MTL method used in this figure has 
been implemented via ILP-s with p = 3. It is interesting to note that a non-linear Hamiltonian system remains 
Hamiltonian under the MTL-based transformation. In fact, the non-uniqueness of the MTL method should be 
exploitable to tailor it to preserve any other invariants of motion (if they exist). Efforts are also underway to 
adapt the MTL principle for homogenization of ill-conditioned non-linear operators (e.g., dynamic wrinkling of 
membranes) of relevance in structural dynamics. 
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Fig. 1 A schematic representation of the                      Fig. 2. Relative numerical stability of MTL vis-à-vis 
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