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Summary When applying gradient based optimization tools on complex coupled problems it is of vital importance that the design
sensitivity analysis phase does not take up to much of the time required in theoptimization run. However, in the analysis of coupled
problems the exact Jacobian is often not available and one is faced with theproblem of solving a linear system with an unknown
coefficient matrix. In the paper we present two iterative methods to accomplish this task efficiently. The key advantages of the two
methods compared to an overall finite difference approach are better efficiency because information obtained during analysis can be
reused, and a better or at least a known accuracy, because the sensitivity equations are solved to a specified tolerance. These key points
are illustrated with an example.
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SENSITIVITY ANALYSIS

When applying the direct differentiation method to perform sensitivity analysis, one ultimately ends up with the task of
solving the following sequence of linear systems for each ofthe I design variablesai in the computation of the state
variable sensitivitiesdu

dai
.

∂R(u)

∂u
du
dai

= −
∂R(u,ai)

∂ai
(1)

HereR(u) denotes the equations of state for the problem under consideration. The right hand side can be computed ana-
lytically or by using finite differences. The Jacobian∂R

∂u is the same as the one used for the analysis if the analysis problem
is based on some variant of Newton’s method. Therefore the computation of the state sensitivities can be performed very
efficiently when the solution for state is based on Newton’s method and a direct solver is used together with an exact
Jacobian. If an exact Jacobian is not used in the analysis, then the methodology can not be directly used, and instead an
iterative method must be used. In the paper we focus on what kind of efficiency and accuracy that can be obtained in the
sensitivity analysis with two types of modified methods which avoids the use of an exact Jacobian.
The base ingredient in both types of methods is the realization that the product of the system Jacobian and an arbitrary
vectorz can be computed by using forward differences by means of the definition of the directional derivative ofR, i.e.

∂R(u)

∂u
z ≈

R(u+αz)−R(u)

α
, with α ∼

‖u‖∞
‖z‖∞

√

10εm (2)

This way to evaluate the matrix-vector product is relatively cost efficient, provided that the computation of the residuals
for the solution of the underlying nonlinear equations is efficient. Implementing the matrix product requires little effort.
What is needed is to find a good perturbationα and a routine which can update the state variables accordingto a specified
increment. The updating routine is the same as one would use in a Newton method for the analysis problem. The reason
for putting 10 in front of the machine precision as indicatedin (2) is an assumption that the residual computation is not
accurate in the last significant digit. With this selection of the perturbation the implied accuracy in the matrix-vector
product is such that approximately half the significant digits contained in the result are accurate provided that the problem
is reasonably well scaled. Knowing a way to compute the product of the exact Jacobian with a vector the sensitivity
equation can be rewritten in a form which makes use of the finite difference matrix-vector product as

J̃
(

∆
du
dai

)k

= −
∂R
∂ai

−J
du
dai

k

, with
∂R(u)

∂u
= J = J̃+Jd (3)

where the Jacobian is split into the part used in the analysisas iteration matrix̃J and the part discarded in the analysisJd.
This iteration is a stationary iterative method, i.e. the iteration matrix is constant throughout iterations.
The iterative DSA method of (3) can be improved by using a non-stationary method. The benefits are improved robustness
and faster convergence. Since many iterative methods for linear systems only require matrix-vector products and precon-
ditioning operations, the sensitivity system can be solvedby using the finite difference evaluation of the matrix-vector
product within the iterative method. This is a well-known approach for solving nonlinear equations and is often referred
to as a matrix-free implementation or as an inexact Newton-Krylov method. The process of obtaining the design sensitiv-
ities is efficient because the preconditioner used for the analysis can be reused for the sensitivity analysis. If available, the
iteration matrixJ̃ from the analysis phase is often a good preconditioner.
The second method uses Quasi Newton methods to solve the linear system. The initial iteration matrix is chosen asJ̃,
and the iteration matrix is then updated during iterations using secant information. WheñJ is a good approximation to
the system Jacobian the methods are effective. The non-stationary method converges at a faster rate to a solution than the
stationary method described by (3). For some of the examplesstudied the non-stationary method can converge to a much
tighter convergence tolerance on the sensitivity system.
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Figure 1. Flexible cylinder example. Note the different boundary conditions in the twodifferent cases.

Table 1. Number of matrix-vector products required for convergence in DSA example on mesh 1. The leftmost column shows boundary
conditions. BGM is ”Broyden’s Good Method”, GMRES is Generalized Minimum RESidual, BiCGSTAB is Bi-Conjugate Gradient
STABilized, and CGS is Conjugate Gradient Squared.

Load case DVNo Stationary BGM GMRES BiCGSTAB CGS
1 9 5 3 4 4
2 9 5 3 4 4
3 8 5 4 6 4
4 8 6 4 6 4
1 NC 6 4 6 6
2 NC 7 4 6 6
3 NC 7 5 8 8
4 NC 7 5 8 12

EXAMPLE

The example is a nonlinear steady state fluid-structure problem and is illustrated in Fig. 1. The analysis problem is to
find the flow around the flexible cylinder, which is very flexible, such that it deforms significantly due to the flow induced
forcing on the interface between the solid domain and the fluid domain. The design variables we are investigating are
two shape design variables (thickness of cylinder dv1 and dv2), and two material parameters, namely the stiffness of
the cylinder material (dv3) and the fluid viscosity (dv4). Note that the example has been run with two sets of boundary
conditions denoted by ”a” and ”b” in the table. The difference is that the cylinder is fixed vertically upstream in ”a” and
it is free to move in ”b”, see Fig. 1. This does not influence theobtained results, but it changes the spectral radius of the
Jacobian, since fixing the cylinder in the front changes the smallest eigenvalue of the solid.
The results of the experiment are shown in Table 1. The basis for comparison is the number of matrix-vector multiplica-
tions needed for convergence. The convergence criterion was 10−5 on both error and solution update. As preconditioner
in the Krylov methods and as the initial iteration matrix in BGM a full factorization of the approximate Jacobian is used.
From the results it can be concluded that the stationary method always performs the worst of the methods, and for the case
”b” boundary condition it does not converge. Therefore thismethod is not recommended for general use. The additional
work involved in implementing BGM seems well worth the effort. Both the iterative Krylov solvers perform as well as
BGM, however the effort required to implement the Krylov methods are substantially larger than what is required for
BGM, assuming that the Krylov solvers are not already implemented for other purposes. Also note that the convergence
criterion used for BGM is slightly tougher to fulfil than the one used for the Krylov methods. For the same residual norm
the number of iterations differs with only one iteration. Ofthe two Krylov solvers the GMRES method gives the fastest
convergence which will often be the case when a small number of iterations is used. The reason is that GMRES does not
need to restart for the small number of iterations thus maintaining its minimization property.
The amount of time spent for the complete sensitivity analysis is around 2% of the analysis time for each design variable
when a central difference is used in the matrix-vector product. This includes calculating the pseudo load with central
differences. If forward differences are used the time wouldbe approximately halved. The time complexity of the sensi-
tivity analysis scales better than the analysis in terms of number of unknowns, where the most time consuming task for
the sensitivity analysis is back substitution/preconditioning operations compared to matrix factorizations for theanalysis.
This has been verified numerically by using a sequence of successively refined discretizations.

CONCLUDING REMARKS

The two improved methods for performing iterative DSA on complex systems both perform better than the simple iterative
method, both in terms of efficiency and robustness. The methods have also been successfully used on problems involving
turbulence models on top of the coupled analysis, and they are easily extendible to other types of problems, as long as the
underlying method for analysis is residual based. The resulting efficiency of the methods is as good as the efficiency of
the residual evaluation.


