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Summary When applying gradient based optimization tools on complex coupled pnshites of vital importance that the design
sensitivity analysis phase does not take up to much of the time required aptingization run. However, in the analysis of coupled
problems the exact Jacobian is often not available and one is faced witirabkem of solving a linear system with an unknown
coefficient matrix. In the paper we present two iterative methods tonggiesh this task efficiently. The key advantages of the two
methods compared to an overall finite difference approach are b#ittéerey because information obtained during analysis can be
reused, and a better or at least a known accuracy, because thigisepguations are solved to a specified tolerance. These key points
are illustrated with an example.
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SENSITIVITY ANALYSIS

When applying the direct differentiation method to perforensitivity analysis, one ultimately ends up with the task of
solving the following sequence of linear systems for eackhefi design variables; in the computation of the state
variable sensitivitiegy .
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HereR(u) denotes the equations of state for the problem under caasiole. The right hand side can be computed ana-
Iytically or by using finite differences. The Jacobi% is the same as the one used for the analysis if the analysitepno
is based on some variant of Newton’s method. Therefore thgatation of the state sensitivities can be performed very
efficiently when the solution for state is based on Newton&thmd and a direct solver is used together with an exact
Jacobian. If an exact Jacobian is not used in the analysis,ttte methodology can not be directly used, and instead an
iterative method must be used. In the paper we focus on whdtdiefficiency and accuracy that can be obtained in the
sensitivity analysis with two types of modified methods Whéwoids the use of an exact Jacobian.
The base ingredient in both types of methods is the readizdtiat the product of the system Jacobian and an arbitrary
vectorz can be computed by using forward differences by means ofdfiition of the directional derivative @R, i.e.
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This way to evaluate the matrix-vector product is relayivadst efficient, provided that the computation of the reaiglu
for the solution of the underlying nonlinear equations f&cafnt. Implementing the matrix product requires littléoet.
What is needed is to find a good perturbattoand a routine which can update the state variables accotalegpecified
increment. The updating routine is the same as one wouldhus®&ewton method for the analysis problem. The reason
for putting 10 in front of the machine precision as indicaite?) is an assumption that the residual computation is not
accurate in the last significant digit. With this selectidrittee perturbation the implied accuracy in the matrix-vecto
product is such that approximately half the significanttdigontained in the result are accurate provided that thelgamo

is reasonably well scaled. Knowing a way to compute the prbdiithe exact Jacobian with a vector the sensitivity
equation can be rewritten in a form which makes use of theefitifference matrix-vector product as
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where the Jacobian is split into the part used in the anadsiteration matrixj and the part discarded in the analydds

This iteration is a stationary iterative method, i.e. tleedation matrix is constant throughout iterations.

The iterative DSA method of (3) can be improved by using a stationary method. The benefits are improved robustness
and faster convergence. Since many iterative methodsfealisystems only require matrix-vector products and preco
ditioning operations, the sensitivity system can be solygdising the finite difference evaluation of the matrix-wgct
product within the iterative method. This is a well-knowrpegach for solving nonlinear equations and is often reterre
to as a matrix-free implementation or as an inexact Newtoyiekt method. The process of obtaining the design sensitiv-
ities is efficient because the preconditioner used for tladyais can be reused for the sensitivity analysis. If atdélathe
iteration matrixJ from the analysis phase is often a good preconditioner.

The second method uses Quasi Newton methods to solve tfae Sgstem. The initial iteration matrix is chosenJas
and the iteration matrix is then updated during iteratiosisgi secant information. Whehis a good approximation to
the system Jacobian the methods are effective. The ndorsiat method converges at a faster rate to a solution thean th
stationary method described by (3). For some of the exanspleied the non-stationary method can converge to a much
tighter convergence tolerance on the sensitivity system.
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Figure 1. Flexible cylinder example. Note the different boundary conditions in thedifferent cases.
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Table 1. Number of matrix-vector products required for convergence in D&% ®le on mesh 1. The leftmost column shows boundary
conditions. BGM is "Broyden’s Good Method”, GMRES is Generalized MimmRESidual, BICGSTAB is Bi-Conjugate Gradient
STABIlized, and CGS is Conjugate Gradient Squared.
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EXAMPLE

The example is a nonlinear steady state fluid-structurel@moland is illustrated in Fig. 1. The analysis problem is to
find the flow around the flexible cylinder, which is very flexabkuch that it deforms significantly due to the flow induced
forcing on the interface between the solid domain and the flisimain. The design variables we are investigating are
two shape design variables (thickness of cylinder dvl ar),dand two material parameters, namely the stiffness of
the cylinder material (dv3) and the fluid viscosity (dv4). tBlthat the example has been run with two sets of boundary
conditions denoted by "a” and "b” in the table. The differens that the cylinder is fixed vertically upstream in "a” and

it is free to move in "b”, see Fig. 1. This does not influence db&ined results, but it changes the spectral radius of the
Jacobian, since fixing the cylinder in the front changes thallest eigenvalue of the solid.

The results of the experiment are shown in Table 1. The basiimparison is the number of matrix-vector multiplica-
tions needed for convergence. The convergence criterisnl@z on both error and solution update. As preconditioner
in the Krylov methods and as the initial iteration matrix iGB! a full factorization of the approximate Jacobian is used.
From the results it can be concluded that the stationary odedlways performs the worst of the methods, and for the case
"b” boundary condition it does not converge. Therefore thiethod is not recommended for general use. The additional
work involved in implementing BGM seems well worth the effoBoth the iterative Krylov solvers perform as well as
BGM, however the effort required to implement the Krylov hmds are substantially larger than what is required for
BGM, assuming that the Krylov solvers are not already im@eted for other purposes. Also note that the convergence
criterion used for BGM is slightly tougher to fulfil than the@used for the Krylov methods. For the same residual norm
the number of iterations differs with only one iteration. @& two Krylov solvers the GMRES method gives the fastest
convergence which will often be the case when a small numiiegrations is used. The reason is that GMRES does not
need to restart for the small number of iterations thus raaiirtg its minimization property.

The amount of time spent for the complete sensitivity angligsaround 2% of the analysis time for each design variable
when a central difference is used in the matrix-vector pebdT his includes calculating the pseudo load with central
differences. If forward differences are used the time wdddpproximately halved. The time complexity of the sensi-
tivity analysis scales better than the analysis in termsuofimer of unknowns, where the most time consuming task for
the sensitivity analysis is back substitution/precownditig operations compared to matrix factorizations forahalysis.
This has been verified numerically by using a sequence otssga®ly refined discretizations.

CONCLUDING REMARKS

The two improved methods for performing iterative DSA on phew systems both perform better than the simple iterative

method, both in terms of efficiency and robustness. The ndsthave also been successfully used on problems involving
turbulence models on top of the coupled analysis, and thegasily extendible to other types of problems, as long as the
underlying method for analysis is residual based. The tiaguéfficiency of the methods is as good as the efficiency of

the residual evaluation.



