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Summary.  Two classes of optimization problems are discussed in the paper: optimal loading distribution providing maximal or 
minimal structural response and optimal loading for structural identification providing maximum of the distance measure between the 
computed response of a model and the response of the actual structure measured in an experiment. Various measures of structural 
response are discussed, namely the total potential energy which represents the global stiffness of a structure, quadratic norm of 
displacement vector or arbitrary functional expressed in displacements. Derived optimality conditions for the optimal loading have 
the form of the coaxiality rule between forces and displacements and/or follow from the solution of the respective eigenvalue 
problems. The theory is illustrated by examples of optimal loading in structural problems and identification. 
 

OPTIMAL FORCE ACTION 
 
Problems of optimal reaction forces were first formulated in the form of maximization of global stiffness expressed by 
the total potential energy Π or maximization of limit load [1]. This approach was used in [2] for optimization of 
loading. Opposite formulation was proposed in [3], where the optimal loading provided minimum Π. Thus obtained the 
“worst”  loading was used for optimal design of composites. The idea was further developed in [7], where it was shown 
that the formulation leads to Stekloff eigenvalue problem. The present paper is concerned with a generalized class of 
problems, where the optimal loading distribution provides maximal or minimal structural response measured by various 
response functions. Discrete formulation will be used. 
Let us consider the general case when a structure is subjected to a constant load f0 and then the load ∆f is superposed on 
it. The designer’s concern is to find the best or the worst superposed load ∆f = f – f0 , which is associated with extremal 
structural response to the total load f. Let us introduce the structure response measure in the form of the general function 
of displacements u, namely I = I(u) and the constraint on  f – f0  in the form of the quadratic norm. The problem can be 
formulated in the form: find optimal load f, which provides extremum I and satisfies respective constraints, namely 
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where K  denotes the global stiffness matrix. The Lagrange function has the form 
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and the stationarity condition can be expressed as follows 
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Assuming  δ u  and  δ f  as independent vectors, the necessary stationarity conditions are 
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The first condition (4) specifies the adjoint problem and the second provides the coaxiality rule between the adjoint 

displacement ua and the primary load vector f – f0 . Introducing aa1a DffKu == −  into (4)2  the coaxiality condition 
can be expressed in explicit form, which may in general be nonlinear as  
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Let I(u) be a quadratic function with a symmetric positive definite weighting matrix A, thus 
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and the equation (5) becomes linear  
 

( ) ( ) ADDBffBfffADfD T
00

T      ,  or              =−=−= ηη  . 
 

(7) 
 

In a special case we may assume A = 1, then f  a = Df = u in (6) and B = DTD in (7). Assumption A = K  is equivalent to 
the energy control which provides minimum or maximum of the global complementary energy C = 0.5 uTKu. In the 
latter case we arrive at optimal loading conditions  (4)2, (5)1 and (7)1 in the form Df = u = η (f – f0).  
Now, let us assume that initial loading does not appear and the total load f can be optimally controlled. Setting f0 = 0 in 
the derived stationarity conditions we arrive at coaxiality rules between total force vectors f and adjoint displacements 
ua (or u) in (4)2 and (7). Moreover, the stationarity conditions (5)1 and (7) take the form of eigenvalue problems. The 
optimal load action can be illustrated in the form of ellipsoids in the space of load parameters. The principal axes of the 
ellipsoids coincide with the extremal load vectors. This will be illustrated by a series of examples.  



OPTIMAL LOADING IN STRUCTURAL IDENTIFICATION 
 
Assume that the actual structure is described by the stiffness matrix K 1 , which is specified from experimental data, 
whereas K 2 refers to an assumed structure model. Our aim is to find the optimal loading f, which maximizes the 
distance norm  I =Ψ (u2 – u1) 
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The associated Lagrangian and its variation take the form 
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Here     , a
2

a
1 uu  and µ are the Lagrange multipliers. Introduce the adjoint systems specified by 
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The optimality condition for load distribution now takes the form 
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Here the optimal load is coaxial to the difference of adjoint displacements of the actual structure and the model. In the 
case when the energy norm I = I2 = 0.5f  T(D2 –D1)f is used as the measure of the distance between responses of the real 
structure and a model [3], then in (12) the adjoint displacements and forces u1

a, u2
a and f  a are substituted by primary 

vectors u1 , u2 and f, respectively. Then, the optimal load follows from eigenvalues of D2 - D1. Now, assume A to be a 
quadratic positive definite matrix. Thus, another distance measure I=I3 and optimality condition can appear  
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The optimal loading follows from the eigenvalue problem (13)2. In simple but practical case when A = 1, the optimal 
loading can be computed as eigenvectors of the square of D2 - D1 . Various distance measures were discussed in [5]. 
 
Examples of the identification will be presented, where the distance measures I2 , I3 and the Euclidean norm of the 
matrix D2 - D1 will be used. Three Euclidean vector spaces are used: Rn for FEM, Rm for the searched design 
parameters, and Rk for the load control. A step-by-step procedure is proposed, where at each identification step the 
optimal load is used. Bimodal solutions were encountered in the examples. At the final stage of the identification 
procedure the wavelet representation of design parameters is used, too. 
 

CONCLUDING REMARKS 
 

Using various response functions the sensitivity derivatives with respect to load parameters and the optimality 
conditions were derived. The optimal load conditions have the form of the generalized coaxiality rule of loads and 
adjoint displacements and/or follow from the eigenvalue problems. Numerical examples of structural identification 
proved the usefulness of the derived optimality conditions.  
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