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Summary.  Two classes of optimization problems are discussed in the paper: optimal loading distribution providing maximal or
minimal structural response and optimal loading for structural identification providing maximum of the distance measure between the
computed response of a model and the response of the actual structure measured in an experiment. Various measures of structural
response are discussed, namely the total potential energy which represents the globa stiffness of a structure, quadratic norm of
displacement vector or arbitrary functional expressed in displacements. Derived optimality conditions for the optimal loading have
the form of the coaxidlity rule between forces and displacements and/or follow from the solution of the respective eigenvaue
problems. The theory isillustrated by examples of optimal loading in structural problems and identification.

OPTIMAL FORCE ACTION

Problems of optimal reaction forces were first formulated in the form of maximization of global stiffness expressed by
the total potential energy /7 or maximization of limit load [1]. This approach was used in [2] for optimization of
loading. Opposite formulation was proposed in [3], where the optimal loading provided minimum M. Thus obtained the
“worst” loading was used for optimal design of composites. The idea was further developed in [7], where it was shown
that the formulation leads to Stekloff eigenvalue problem. The present paper is concerned with a generalized class of
problems, where the optimal loading distribution provides maximal or minimal structural response measured by various
response functions. Discrete formulation will be used.

Let us consider the general case when a structure is subjected to a constant load fo and then the load Af is superposed on
it. The designer’s concern is to find the best or the worst superposed load Af = f —f, , which is associated with extremal
structural response to the total load f. Let us introduce the structure response measure in the form of the general function
of displacements u, namely | = I(u) and the constraint on f —f, in the form of the quadratic norm. The problem can be
formulated in the form: find optimal load f, which provides extremum | and satisfies respective constraints, namely

I(u) — extremum, subjectto Ku=f, (f-f,) (f-f,)-p2=0, )
where K denotes the global stiffness matrix. The Lagrange function has the form
1, f,u%,7) = 1) - () (Ku —f)-%/][(f )T (f ~fo) - 02] 2
and the stationarity condition can be expressed as follows
SIt = JuT((‘;'j—KuaJMfT(ua —nlf -f,))=0. @3)
Assuming du and Jf asindependent vectors, the necessary stationarity conditions are
Kua:%:fa(f), ut =pf -f,). 4

The first condition (4) specifies the adjoint problem and the second provides the coaxiality rule between the adjoint
displacement u? and the primary load vector f —f, . Introducing u® = K f = Df  into (4)* the coaxiality condition
can be expressed in explicit form, which may in general be nonlinear as

Df2(f)=n(f -f,), or K(u—u0)=1ua(u) : (5)
n
Let I(u) be aquadratic function with a symmetric positive definite weighting matrix A, thus
IW)=2uAu | ta=91 _ Ay = ADf (6)
2 Jdu

and the equation (5) becomes linear
D'ADf =p(f -f,) or Bf=p(f-f,), B=D'AD . @)

In aspecial case we may assumeA =1, thenf®=Df =uin (6) and B = D'D in (7). Assumption A = K is equivalent to
the energy control which provides minimum or maximum of the global complementary energy C = 0.5 u'Ku. In the
|atter case we arrive at optimal loading conditions (4)?, (5)* and (7)* in the form Df = u = 57 (f — f,).

Now, let us assume that initial loading does not appear and the total load f can be optimally controlled. Setting fo = 01in
the derived stationarity conditions we arrive at coaxiality rules between total force vectors f and adjoint displacements
u?® (or u) in (4)? and (7). Moreover, the stationarity conditions (5)* and (7) take the form of eigenvalue problems. The
optimal load action can beillustrated in the form of ellipsoids in the space of load parameters. The principal axes of the
ellipsoids coincide with the extremal load vectors. Thiswill beillustrated by a series of examples.



OPTIMAL LOADING IN STRUCTURAL IDENTIFICATION

Assume that the actual structure is described by the stiffness matrix K, , which is specified from experimental data,
whereas K, refers to an assumed structure model. Our aim is to find the optimal loading f, which maximizes the
distance norm | =%/ (u, —u,)

| =%(u,-u,) -~ max, subjectto K,u,=f, K,u,=f, f'f-p2=0. ®)
The associated Lagrangian and its variation take the form
a a 1
1= 1= W) (Ko, =)+ @) (K 0, =)= - 7) ©
ay )
olt :(an 5u2+[awj Jul—(uf)TK15u1+(u§)TK25u2+5fT(u§—uf—pf):O : (10)
u2 1

Here uf, uj and parethe Lagrange multipliers. Introduce the adjoint systems specified by

a 61/1 a a 6‘;[/ 6‘;[/ a
Kui=2 =fa, Kuz=-2% =4 0¥ _¢a
Yooy, 72 9u, du, (1D

The optimality condition for load distribution now takes the form
OfT(Ui-ud-puf)=0, hence ui-ud=uf, or (D,-D,)f*=uf. (12)

Here the optimal load is coaxia to the difference of adjoint displacements of the actual structure and the model. In the
case when the energy norm | = |, = 0.5f '(D, —D)f is used as the measure of the distance between responses of the real
structure and a model [3], then in (12) the adjoint displacements and forces u,?, u,” and f # are substituted by primary
vectors u; , U, and f, respectively. Then, the optimal load follows from eigenvalues of D, - D;. Now, assume A to be a
guadratic positive definite matrix. Thus, another distance measure I=l; and optimality condition can appear

|:|3:%(u2—ul)TA(u2—ul), hence (D, -D,)’A(D, -D,)f = uf, or Lf=uf. (13)

The optimal loading follows from the eigenvalue problem (13)2. In simple but practical case when A = 1, the optimal
loading can be computed as eigenvectors of the square of D, - D; . Various distance measures were discussed in [5].

Examples of the identification will be presented, where the distance measures |, , I3 and the Euclidean norm of the
matrix D, - D; will be used. Three Euclidean vector spaces are used: R" for FEM, R™ for the searched design
parameters, and R* for the load control. A step-by-step procedure is proposed, where at each identification step the
optimal load is used. Bimoda solutions were encountered in the examples. At the final stage of the identification
procedure the wavel et representation of design parametersis used, too.

CONCLUDING REMARKS

Using various response functions the sensitivity derivatives with respect to load parameters and the optimality
conditions were derived. The optimal load conditions have the form of the generalized coaxiality rule of loads and
adjoint displacements and/or follow from the eigenvalue problems. Numerical examples of structural identification
proved the usefulness of the derived optimality conditions.
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