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OPTIMAL DESIGN OF LOSSY BANDGAP STRUCTURES
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Summary The method of topology optimization is used to design structures for wave propagation with one lossy material component.

Optimized designs for scalar elastic waves are presented for mininimum wave transmission as well as for maximum wave energy

dissipation. The structures that are obtained are of the 1D or 2D bandgap type depending on the objective and the material parameters.

INTRODUCTION

Elastic and acoustic (commonly referred to as phononic) bandgap structures [1] may find application for vibration sup-

pression and for noise insulation purposes [2]. The periodic arrangement of two materials with different properties may

inhibit the propagation of waves at certain frequencies and for the infinite medium total reflection of the wave occurs.

So far focus has almost entirely been devoted to the wave-reflecting properties and not to the effects, possibly beneficial

for applications, of dissipation in the bandgap structures. This work presents a systematic method for creating optimized

designs of bandgap structures for two objectives: 1) minimum wave transmission through the structure and 2) maximum

dissipation of wave energy in the structure. The structures are obtained as optimized distributions of two materials where

one is lossy, and the design methodology is based on the method of topology optimization. Recently the method was used

to design loss-free bandgap structures for optimized wave reflection [3].

MODEL

Wave propagation with frequency Ω is considered. The wave may be elastic or acoustic and the problem is discretized

using a standard FEM formulation. The resulting field equation governing the complex wave amplitude u is:

(

−Ω2
M + iΩ(Crad + Closs) + K

)

u = f , (1)

where M, K are standard mass- and stiffness-type matrices, and f is a forcing vector stemming from the wave excitation.

The damping matrix generally comprises two terms with Crad originating in the finite domain termination of the wave

propagation, either by a simple radiation condition (Sommerfeld condition) or by extra Perfectly Matching Layers (PMLs).

The matrix Closs represents the contribution to the damping matrix from a lossy material component.

Scalar case: out-of-plane shear waves

As a special case, a 2D problem of an elastic wave propagating in the plane is investigated. By considering the out-of-

plane displacement component (out-of-plane shear) the problem is reduced to a scalar one (Helmholtz equation). Two

materials are defined with the relevant material properties:

ρ1, E1, ν1 ρ2, E2(1 + iα), ν2 (2)

where ρ is the density, E Young’s modulus and ν Poisson’s ratio, and where α is the loss factor for the lossy material

component.

design area
plane
wave

ρ1, E1, ν1

L

ρ1, E1, ν1

Figure 1. 2D computational domain with a scalar elastic shear wave propagating from left to right.

As an illustrative example, calculations are carried out for the 2D domain in Figure 1. A plane wave propagates from left

to right through the structure containing a square design area. Unwanted reflections from the left and the right boundaries

are eliminated by using PMLs to terminate the domain. Traction-free boundaries are specified on the upper and lower

boundaries.

OPTIMIZATION

The goal of the optimization is to find the distribution of the two material components that minimizes (or maximizes) our

objective function J . The following two objectives are considered:
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where J1 is the average squared amplitude of the wave transmitted through the structure and J2 is the wave energy

dissipated in the design area per unit time. In (3), nn is the number of nodal points along the right boundary where the

objective is evaluated and nel is the number of elements in the design area. The element loss damping matrix is closs, ℜ()
denotes the real part, and ū is the complex conjugate field.

The optimization is performed using the method of topology optimization (see e.g. [3] for details). In the present standard

FEM implementation a single design variable is introduced for each finite element in the design domain xe, e = 1, nel.

The material properties are now specified in each element as a linear function of this variable:

Ee = E1 + xe(E2 − E1), ρe = ρ1 + xe(ρ2 − ρ1), αe = xeα (4)

so that for xe = 0 the properties are those of material 1 and for xe = 1 those of material 2 (the lossy material). Poisson’s

ratio is assumed to be constant (ν1 = ν2 = ν).

The optimized material distribution is found using an iterative algorithm where the design change in each iteration is

based on analytical design sensitivities and the use of a mathematical programming tool [4].

RESULTS

Figure 2a-c) show optimized designs for the minimization problem (objective J1). The designs in a) and b) are for

different loss factors (α = 0 and α = 0.2) and show only a small quantitative difference in the designs which are of the

2D bandgap type. The objective values show a 12.6 dB reduction in wave amplitude for a) and 14.6 dB for b). For c)

the same parameters are used as in b), but a different initial guess is used in the optimization leading to a different local

minimum. The design is a 1D bandgap structure (Bragg grating) with an amplitude reduction of 17.2 dB, thus making it

the most efficient design obtained. Figure 2d-f) show designs for three wave frequencies for the maximization problem

(objective J2). The optimized design in d) resembles a 1D Bragg grating whereas the designs in e) and f) are more

intriguing 2D structures. In all three cases the dissipation of wave energy is superior to the extreme case where the whole

design area is filled with lossy material, i.e. the dissipation is increased by a factor 1.12, 1.87 and 1.50 in d), e), and f),

respectively.
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Figure 2. a-c): Minimization of wave transmission, material parameters: E2/E1 = 2.5, ρ2/ρ1 = 2, Ω̃ = 1.5, a) α = 0.0, b) α = 0.2,

c) α = 0.2 (different initial guess). d-f) Maximization of dissipation, material parameters: E2/E1 = 0.5, ρ2/ρ1 = 0.8, α = 0.05, d)

Ω̃ = 1.5, d) Ω̃ = 1.75, f) Ω̃ = 2. Non-dimensional frequency Ω̃ = ΩL/(2πc), c =
√

E1/(2ρ1(1 + ν)).

CONCLUSIONS

Optimal design of structures for wave propagation was considered. The optimized distribution of two material compo-

nents, one lossy, was been obtained for two objectives: 1) minimizing the wave transmission, and 2) maximizing the

dissipation of wave energy. Results were presented for elastic out-of-plane shear waves. The designs obtained are intrigu-

ing 1D and 2D bandgap type structures with good performance for both objectives. Further results will be for the cases of

in-plane elastic waves, as well as optimization for a range of frequencies simultaneously.
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