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Summary. In this paper a brief review of the topology optimization of the geometricaly nonlinea plate composed of a rubkerlike
materia is presented. Thus the materid is assumed to be incompressble hyperelastic subjected to the plane stress A demonstrative
exampleis presented after the topics of the theory of nonlinea continuum mechanics and optimization are introduced.

INTRODUCTION

Typicaly most structural topology optimizaion cases are based on the linear eastic assmption. But investigating
initialy linear structures the optimized structure may be nonlinear as well the structures sibjeded to the large
deformations. So the topics of the nonlinear continuum medanics, aspeds of FEM discretization and solving procedure
of the topology optimization are presented and appli ed to the 2D-plate made of highly nonlinear elastic rubkber.

BASIC THEORY OF NONLINEAR COMPUTATIONAL MECHANICS

Linearization and Newton-Raphson process
The basisfor FEM isthe spatial total virtual work of a deformable body expressed in equili brium state as,
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Abowe gis Cauchy stress ad israte of deformation tensor correspondsto the virtual velocity field dv. f, are body forces
per unit volumev and t tractions per unit surfacearea. The rubberlike material istypically incompressble hyperelactic
and usually Ogden, Mooney-Rivlin or neo-Hookean material. Thus the homogenous dastic function may be postulated
eg.tolastoneas[3], @(C)=u(l;—-3) whereC istheright Cauchy-Green strain tensor defined with deformation
gradient F as F'F depended of the displacement field u. I is its first principal invariant or trC and u the material
parameters determined experimental. The solution of the virtual equili brium system (1) is achieved using N-R iterative
procedure. For that the virtual work equation has to be linearized. Splitti ng the total virtual work into the internal and
external part and further theinternal part into the mnstitutive and initial stresscomponents one @an derivethelinearized
formulafor internal part as foll ows [2]:
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DAWE[Npup] = v, * K& e uy, where K isthe mnstitutive part of elemmtstangent stiffness matrix whose cmponents
infamiliar ortogordl Cartesian coordinate systemareas, [K ] = J. aNa e e aNb —Pdv, i,j =12 @
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Further, in general the dasticity tensor can be split i nto the deviatoric and presare component and another variational
approach has to be used to avoid so-called locking phenomenon (multi-field variational principles). But now in-plane
stress gtuation e% the neo-Hookean e astic function takes the form [2],y(C) = U+ ‘1—3) Cisthein- plane part of C
By relationc=4—= cac the components of c are given in terms of the Kroneker delta &, Cjy =2l Z (5 Oy +0y0, ) (3
Abowe Il ¢ isthe third principal invariant of C or detC. This material model is convenient for vuIcanlzed and natural
rubber. For other materials (e.g. Mooney-Rivlin) the dasticity tensor, see[3]. Now only the mnstitutive part namely the

dadticity tensor c includes explicitly the topology design parameter . This linearized virtual work in the spatial
description is often call ed updated-Lagrangian formulation. For further detail of nonlinear FEM, see[2],[3].

TOPOLOGY OPTIMIZATION

Problem formulation
We set the optimization problem such that only the end-complianceis minimized, so the FEM-discretized formulaisas,
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|.e. the end-complianceis minimized as to the dement’s (€) materia ‘density’ p. under prescribed loading conditions
subjed to an upper bound on the dfedive volume. The dementsin their lower bound are mnsidered asvoid and others
as 2lid. The penalization parameter p forces the densiti esto thelower or upper bound so that the optimized structureis
so ‘white and black’ as possble. For incompressble material p islarge, and to avoid the local minimaor dependency of
the resulting topology of the initial structure and optimization parameters, p should be slowly raised throughout the
optimization (e.g. 1...>4). For further detail of setting the topology optimization problem, see[1]. R(u) = O represents
the nonlinear governing eguations of the model and u the vedor of displacemets considered as date variables. The
optimization problem abowe is ®lved using the interior pendty parameter or augmented Lagrangian method (ALM).
The structural response is lved using the nonlinear quasi-static FEM based on N-R iteration and arc length method.
Because of large deformations the line search method instead of straight appli cation of N-R has to be used to improve
convergencerate. The @nvergence citerion can be relaxed if oscill ation occursin nodes surrounded by void dements.

Sensitivity analysis

In gradient based optimization agorithms the sensitivities have to be determined for the objedive and constraint
functions. Asaume the design independent loads and employ the adjoint method. In the euili brium state for the
ohjedive the sensitivity is determined as foll ows:
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satisfied: (fT -AT Z—Rj :: =0, the Lagrangian multipliers A, can be solved from the system (fT -AT Z—Rj =0or
u R u

K 1A =f. This provides an explicit expresson for the objective function sensitivities (noting (2) and (3)):
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The sensitivity of volume @nstraint is graightforward because of incompresshility. Filtering the sensitiviti es are used
to ensure mesh-independency and to chedkerboardcontrol. The filter is general used heuristic method based on
modifying the design sensitivity of a spesific dement as a weighted average over the dement itsdlf and its neighbours.

Numerical example: topology design for the lender plate

The aim is to determine the optimal distribution of the homogenous incompressble neo-Hookean material with u
equals to 600 KPa. Solving the structural response the simple four-noded bili near quadril ateral eements are used. The
plate is clamped on bath sides, and three oncentrated forces are acted on its top edge with values 1, 2 and 1 N. The
dimension of the plate is 520x130x10 mm?®. Suppose 30 % of design domain volume material is avail able. The design
topology using linear analysisis $own in Fig. 1(a) and from nonlinear analysisin Fig. 1(b). The optimum topology is
such like that the exhibit snap-through behaviour may be occur [4], but not in this example, Fig. 1(c).
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Figure 1. Compliance optimization problem. (a) The design domain, loads, boundary conditi ons and optimal topology using linea
analysis. (b) Optimal topology from nonlinea analysis. (c) Load-disp.-curve of the optimum structure.

CONCLUSIONS

In this paper the topology optimization probdem of fully nonlinear sructureis guded. The mean complianceis chasen asan
objedive and the sengtivity analyssis derived using the adjoint method which is rather straightforward despite spedally the
materia nonlinearity. The probdem is olved iteratively by a sequentia convex approximation method. Numerical examples
indicate that for fully nonlinear structures the optimal result differs reativey much from the optimum of linear equivalent
ones. For imcompresshle nonlinear materid achievement of the ‘black-and-white gructure is hard and the @nvergence
rateis $ow . Sotherobust optimization solution methods sould be used.
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