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 Topology Optimization of the Geometrically Nonlinear Structures Made of Rubberlike Material 
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Summary. In this paper a brief review of the topology optimization of  the geometrically  nonlinear  plate composed of a rubberlike 
material is presented. Thus the material is assumed to be incompressible hyperelastic subjected to the plane stress. A demonstrative 
example is presented after the topics of the theory of nonlinear continuum mechanics and optimization are introduced. 
 

INTRODUCTION 
 
Typicall y most structural topology optimization cases are based on the linear elastic assumption. But investigating 
initiall y linear structures the optimized structure may be nonlinear as well the structures subjected to the large 
deformations. So the topics of the nonlinear continuum mechanics, aspects of FEM discretization and solving procedure 
of the topology optimization are presented and applied to the 2D-plate made of highly nonlinear elastic rubber.  
 

BASIC THEORY OF NONLINEAR COMPUTATIONAL MECHANICS 
 
Linearization and Newton-Raphson process 
The basis for FEM is the spatial total virtual work of a deformable body expressed in equili brium state as, 
 
                        (1) 
 
Above σσ is Cauchy stress, δd is rate of deformation tensor corresponds to the virtual velocity field δv. fb are body forces 
per unit volume v and  t tractions per unit surface area. The rubberli ke material is typicall y incompressible hyperelactic 
and usually Ogden, Mooney-Rivlin or neo-Hookean material. Thus the homogenous elastic function may be postulated 
e.g. to last one as [3] ,                         , where C is the right Cauchy-Green strain tensor defined with deformation 
gradient F as FTF depended of the displacement field u. Ic is its first principal invariant or trC and µ the material 
parameters determined experimental. The solution of the virtual equili brium system (1) is achieved using N-R iterative 
procedure. For that the virtual work equation has to be linearized. Splitti ng the total virtual work into the internal and 
external part and further the internal part into the constitutive and initial stress components one can derive the linearized 
formula for internal part as follows [2]: 
 
 
 
 
            

               
 

    (2) 
 

Further, in general the elasticity tensor can be split i nto the deviatoric and pressure component and another variational 
approach has to be used to avoid so-called locking phenomenon (multi-field variational principles). But now in-plane 
stress situation e.g. the neo-Hookean elastic function takes the form [2],         
               (3) 
Above III c is the third principal invariant of C  or detC . This material model is convenient for vulcanized and natural 
rubber. For other materials (e.g. Mooney-Rivlin) the elasticity tensor, see [3]. Now only the constitutive part namely the 
elasticity tensor c includes explicitl y the topology design parameter µ. This linearized virtual work in the spatial 
description is often called updated-Lagrangian formulation. For further detail of nonlinear FEM, see [2],[3]. 
 

TOPOLOGY OPTIMIZATION 
 
Problem formulation 
We set the optimization problem such that only the end-compliance is minimized, so the FEM-discretized formula is as, 

 
     
 
          (4) 

min

. . ( ) , , , ,..., .

,

( ) ( )
min

u

T

e
p e

e

N

e
p e

e

N

e e
e

N

e

e

s t v V e N

ρ

ρ ρ ρ ρ ρ

f u

K u f R u K u f 0 :    or =       0<  
= = =

∑ ∑ ∑
��� ��� =

��� ��� − = ≤ ≤ ≤ =
1 1 1

1 1

 I .   is the in - plane part of ψ µ( ) ( III )C C CC C
= + −−1

2
1 3

By relation = 4 ,  the components of  are given in terms of the Kroneker delta as, 2 III  -1c c
C C C
∂

∂ ∂
= +

2ψ µ δ δ δ δcijkl ij kl ik jl3 8



c
c d

d

c

T T

e

T

e

T

e e
e

T T

e

T T

T

e

T

e

( , ) ( )
( , )

,

.

ρ ρ λ ρ
ρ ρ

λ
ρ ρ

ρ

λ
ρ

λ λ

λ

ρ
λ

ρ

u f u R
u

f
u R

u
u R

u

f
R
u

u
f

R
u

0

K f

R

= − ∂
∂

= − ∂
∂

∂
∂

+ ∂
∂

��� ���
−

∂
∂

��� ��� ∂
∂

= −
∂
∂

��� ��� =

∂
∂

= − ∂
∂

  and  .   By requiring that all values of d / d   must be 

satisf ied:  ,  the Lagrangian multipliers  can be solved from the system  or 

=  This provides an expl icit expression for the objective function sensitivities (noting (2) and (3)):        
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I.e. the end-compliance is minimized as to the element’s (e) material ‘density’ρe under prescribed loading conditions 
subject to an upper bound on the effective volume. The elements in their lower bound are considered as void and others 
as solid. The penalization parameter p forces the densities to the lower or upper bound so that the optimized structure is 
so ‘white and black’ as possible. For incompressible material p is large, and to avoid the local minima or dependency of 
the resulting topology of the initial structure and optimization parameters, p should be slowly raised throughout the 
optimization (e.g. 1…>4). For further detail of setting the topology optimization problem, see [1]. R(u) = 0 represents 
the nonlinear governing equations of the model and u the vector of displacemets considered as state variables. The 
optimization problem above is solved using the interior penalty parameter or augmented Lagrangian method (ALM). 
The structural response is solved using the nonlinear quasi-static FEM based on N-R iteration and arc length method. 
Because of large deformations the line search method instead of straight application of N-R has to be used to improve 
convergence rate. The convergence criterion can be relaxed if oscill ation occurs in nodes surrounded by void elements. 
 
Sensitivity analysis 
In gradient based optimization algorithms the sensiti vities have to be determined for the objective and constraint 
functions. Assume the design independent loads and employ the adjoint method. In the equili brium state for the 
objective the sensiti vity is determined as follows: 
  
 
 
 
 
 
 

     (5) 

The sensiti vity of volume constraint is straightforward because of incompressibilit y. Filtering the sensiti vities are used 
to ensure mesh-independency and to checkerboardcontrol. The filter is general used heuristic method based on 
modifying the design sensiti vity of a spesific element as a weighted average over the element itself and its neighbours.  
 
Numerical example: topology design for the slender plate  
The aim is to determine the optimal distribution of the homogenous incompressible neo-Hookean material with µ  
equals to 600 kPa. Solving the structural response the simple four-noded bili near quadrilateral elements are used. The 
plate is clamped on both sides, and three concentrated forces are acted on its top edge with values 1, 2 and 1 N. The 
dimension of the plate is 520×130×10 mm3. Suppose 30 % of design domain volume material is available. The design 
topology using linear analysis is shown in Fig. 1(a) and from nonlinear analysis in Fig. 1(b).  The optimum topology is 
such li ke that the exhibit snap-through behaviour may be occur [4], but not in this example, Fig. 1(c). 
        F        2F  F                      F         2F        F                        f 
            (a)   (b)               (c) 
        

     u 

Figure 1. Compliance optimization  problem. (a) The design domain, loads, boundary conditions and optimal topology using linear 
analysis. (b) Optimal topology from nonlinear analysis. (c) Load-disp.-curve of the optimum structure. 
 

CONCLUSIONS 
 

In this paper the topology optimization problem of fully nonlinear structure is studied. The mean compliance is chosen as an 
objective and the sensitivity analysis is derived using the adjoint method which is rather straightforward despite specially the 
material nonlinearity. The problem is solved iteratively by a sequential convex approximation method. Numerical examples 
indicate that for fully nonlinear structures the optimal result differs relatively much from the optimum of linear equivalent 
ones. For imcompressible nonlinear material achievement of the ‘black-and-white’ structure is hard and the convergence 
rate is slow . So the robust optimization solution methods should be used. 
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