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Summary The numerical solution of topology design problems often results in optimal designs containing microstructures character-
ized by oscillating material density fields such as the well-known "checkerboard-patterns", whose realization turns out to be difficult
from the engineering point of view. In this context we introduce a density gradient based regularization approach including a global
penalty functional, which prevents the formation of oscillating density distributions. Furthermore we discuss numerical aspects of the
proposed regularization and present solutions of the regularized topology optimization problem for exemplary design problems.

FORMULATION & REGULARIZATION OF THE TOPOLOGY OPTIMIZATION PROBLEM

The formulation of topology design problems requires in general the introduction of a discrete material-indicator function
ρ : x → {0, 1} as design variable[1], which divides the design domainΩ into a solid regionΩs = {x ∈ Ω | ρ(x) = 1}
and an empty regionΩe = {x ∈ Ω | ρ(x) = 0}. To obtain a continuous optimization problem, instead of a large-
scale combinatorial problem, the indicator function is usually identified as the material density and intermediate values
between0 and1 are admitted. In addition special penalty methods such as the SIMP-approach [1] are used to reduce
the set of admissible solutions to so-called "black&white" designs free of "gray" regions characterized by intermediate
density values, whose realization turns out to be difficult from the engineering point of view. In the case of linear-elastic
maximum-stiffness-design the corresponding optimization problem can be formulated in the following form [1]
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ρ
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t δu dΓt , E = ρpE0 , p > 1

∫
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ρ dΩ ≤ M0 , 0 ≤ ρ ≤ 1.

The displacement fieldu caused by body forcesfv and traction forcesft, acting on the boundaryΓt of the design domain,
is determined by the variational form of the equilibrium condition, which can be handled as a constraint to the optimization
problem. In this contextC denotes the material rigidity tensor andE corresponds to the Young’s modulus of the material.
Nevertheless the implementation of the SIMP-approach or equivalent penalty methods results in discontinuities in the
global density distribution and often leads to designs containing unfavourable microstructures such as the well-known
"checkerboard patterns" [3] characterized by oscillations of the density function between the discrete values0 and1.
To obtain "black&white" designs free of microstructures the optimization problem(1) can be regularized by the so-called
X-SIMP-approach [2]

E = ρpE0e
−γλ , p > 1 , γ > 0 , λ =

∫
Ω

(∇ρ)T ∇ρ dΩ, (2)

whereγ corresponds to an additional penalty parameter andλ represents a global penalty functional based on the gradient
of the density function, which prevents the formation of oscillating density distributions characterized by high density
gradients. In consideration of the above penalty-approach the topology optimization problem(1) has to be modified as
follows
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ρ
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∫
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(∇ρ)T (∇ρ) dΩ

∫
Ω

ρ dΩ ≤ M0 , 0 ≤ ρ ≤ 1.

In this context we present results of numerical studies of different maximum-stiffness-design problems, such as the ex-
amples stated below (figure 1), and we compare optimal designs obtained on the basis of the SIMP-approach and the
X-SIMP-regularization. Furthermore we discuss numerical aspects of the proposed regularization approach such as the
finite-element-discretization of the regularized problem, the formulation of an appropriate finite-element-type and the cor-
responding stiffness-matrix, the sensitivity analysis and the numerical solution of the discretized optimization problem.
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Figure 1. Topology design based on the SIMP-approach and the X-SIMP-regularization
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