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Summary We present a method to maximize the separation of two adjacent eigenfrequencies in structures with two material compo-
nents. The method is based on finite element analysis and topology optimization where an iterative algorithm is used to find the optimal
distribution of the materials. Results are presented for vibration problems governed by the 2D scalar wave equations.

INTRODUCTION

One strategy for passive vibration control of mechanical structuresisto design the structures so that eigenfrequencieslieas
far away as possible from the excitation frequencies. This paper exploits the possibility for using the method of topology
optimization to maximize the separation of two adjacent eigenfrequencies in structures with two material components.
This study is restricted to 2D structures where the vibrations are governed by the scalar wave equation.

THE 2D SCALAR CASE
Here we show results related to the 2D scalar case. Results also including the 1D scalar case can be found in [1].

M odel
The 2D scalar time-reduced wave equation (Helmholtz equation) is given by:

VT (A(z,y)Vw) + w’B(z, y)w = 0, @)

where the problem dependent material coefficients A and B can vary in the 2D plane (z,y). By changing the two
coefficients A and B we study different structural vibration problems. Letting A = 1 and B = p/T enable us to
analyze the membrane problem where p(z) isthe density and T" isthe uniform tension (force per area). Alternatively with
A =E/(2(1+v)), where E(z) is Young's modulus and v(z) is Poisson’s ratio, and with B = p(x) being the density,
(1) governs out-of-plane shear vibrations of athick elastic body.

To solve the wave equation with in-homogeneous coefficients we apply a standard Galerkin finite element discretization
of equation (1) and the boundary conditions, which leads to the discrete eigenvalue problem:

K¢ = w’Mo, @)

that has (w;, ¢;) asthei’'th eigensolution (frequency and vector), and M, K are system matrices given as.
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where the summations should be understood in the normal finite element sense, with k. and m. being element matrices.
OPTIMIZATION

When we optimize a 2D domain with respect to maximizing the gap between eigenfrequencies there are anumber of extra
difficulties we must deal with. The primary source of the difficulties is the possibility of multiple eigenfrequencies. The
multiple eigenfrequencies can be calculated without difficulty using e.g. the subspace iteration method [2]. The objective
for the optimization is given by

maximize J = wyi1 — wy, 4)

where the gap between the eigenfrequency of order n + 1 and n is maximized. If the eigenfrequencies of order n + 1 and
n are both distinct eigenpairs, with squared eigenfrequenciesw? , ; and w? and corresponding eigenvectors ¢, ; and ¢,,,
no problems arise and we use the objective (4) directly since the sensitivities of the squared eigenfrequency with respect
to adesign parameter ¢, are then given by:
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assumed that the eigenvector have been normalized so that ¢ M¢ = 1. In the case of multiple eigenvalues we cannot
use (5) to find the sensitivities. The extended method is presented in [3] and used more recently in [4], and with this
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Figure 1. Eigenfrequency optimization of a 2D domain with two different materials, the design domain is a square that have no
supports (free boundary conditions); (a) the result when maximizing the gap between 2nd and 3rd eigenfrequency, (b) 8th and 9th
eigenfrequency, (c) 12th and 13th eigenfreguency.

method it is now possible to find the sensitivities of multiple eigenfrequencies. There is however till a problem because
the sensitivities are given for specific eigenvectors that vary for each design parameter. It is therefore difficult to solve the
optimization problem as formulated in (4). As an alternative formulation we propose to use a double bound formulation.
The standard bound formulation is used to reformulate amin-max problem. Instead of minimizing the maximum value of a
given quantity, anew variableisintroduced which is minimized subject to the constraint that the val ue of the given quantity
should be less than this variable. The present optimization problem of maximizing the gap between two eigenfrequencies
isreformulated as:

max;, J=0C1—Cq
subjectto: w4 > C i € [1,n4] ©)
wnt1—; < Co j€[l,n]

Penalization

The basis of topology optimization with a material interpolation scheme is to assign constant material properties to each
element in the finite element model and then to associate these material properties with continuous design variables. The
simplest interpolation of the material coefficients A and B when using two materialsis done using alinear approach:

Ac(te) = Ay +te(Ay — Ay), Be(te) = B1 + te(Bs — By), (7)

where t. is the element design parameter which takes values between 0 and 1. This is however not appropriate when
optimizing eigenfrequencies. In [5] it was noted that the important aspect is not the interpolation of the stiffness (here
coefficient A) or the interpolation of the mass (here coefficient B) but the interpolation of the eigenfrequency. The squared
eigenfrequency w? is by the Rayleigh quotient given as"tiffness divided by mass'. A first choice would then be to make
an interpolation of the squared eigenfrequency which is alinear function of the design parameter ¢.. This will however
still not givea0-1 designi.e. adesign with no intermediate material. We must therefore make a penalization that will drive
the design to afinal 0-1 result. It is possible to make an interpolation/penalization function that will work for an objective
where we want to maximize an eigenfrequency but this will not work for a minimization of an eigenfrequency. In the
objective of (6) we both have to maximize one eigenfrequency and at the same time minimize a second eigenfrequency
this cannot be achieved by one penalization function. To overcome this problem we apply a method where the sensitivities
related to the constraints with C in (6) are calculated using one penalization function and the sensitivities related to the
constraints with Cs are calculated using a second penalization function.

EXAMPLES

Infigure 1 we show the results of maximizing the gap between three different sets of el genfrequencies of a square domain,
black and white corresponds to the two different materials.
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