
XXI ICTAM, 15–21 August 2004, Warsaw, Poland

ON SEPARATION OF EIGENFREQUENCIES IN TWO-MATERIAL STRUCTURES

Niels L. Pedersen
Institute of Mechanical Engineering, Aalborg University, Pontoppidanstræde 101, DK-9220 Aalborg East,

Denmark

Summary We present a method to maximize the separation of two adjacent eigenfrequencies in structures with two material compo-
nents. The method is based on finite element analysis and topology optimization where an iterative algorithm is used to find the optimal
distribution of the materials. Results are presented for vibration problems governed by the 2D scalar wave equations.

INTRODUCTION

One strategy for passive vibration control of mechanical structures is to design the structures so that eigenfrequencies lie as
far away as possible from the excitation frequencies. This paper exploits the possibility for using the method of topology
optimization to maximize the separation of two adjacent eigenfrequencies in structures with two material components.
This study is restricted to 2D structures where the vibrations are governed by the scalar wave equation.

THE 2D SCALAR CASE

Here we show results related to the 2D scalar case. Results also including the 1D scalar case can be found in [1].

Model
The 2D scalar time-reduced wave equation (Helmholtz equation) is given by:

∇T (A(x, y)∇w) + ω2B(x, y)w = 0, (1)

where the problem dependent material coefficients A and B can vary in the 2D plane (x, y). By changing the two
coefficients A and B we study different structural vibration problems. Letting A = 1 and B = ρ/T enable us to
analyze the membrane problem where ρ(x) is the density and T is the uniform tension (force per area). Alternatively with
A = E/(2(1 + ν)), where E(x) is Young’s modulus and ν(x) is Poisson’s ratio, and with B = ρ(x) being the density,
(1) governs out-of-plane shear vibrations of a thick elastic body.
To solve the wave equation with in-homogeneous coefficients we apply a standard Galerkin finite element discretization
of equation (1) and the boundary conditions, which leads to the discrete eigenvalue problem:

Kφ = ω2Mφ, (2)

that has (ωi,φi) as the i’th eigensolution (frequency and vector), and M, K are system matrices given as:

K =
N∑

e=1

Aeke, M =
N∑

e=1

Beme, (3)

where the summations should be understood in the normal finite element sense, with ke and me being element matrices.

OPTIMIZATION

When we optimize a 2D domain with respect to maximizing the gap between eigenfrequencies there are a number of extra
difficulties we must deal with. The primary source of the difficulties is the possibility of multiple eigenfrequencies. The
multiple eigenfrequencies can be calculated without difficulty using e.g. the subspace iteration method [2]. The objective
for the optimization is given by

maximize J = ωn+1 − ωn, (4)

where the gap between the eigenfrequency of order n + 1 and n is maximized. If the eigenfrequencies of order n + 1 and
n are both distinct eigenpairs, with squared eigenfrequencies ω2

n+1 and ω2
n and corresponding eigenvectors φn+1 and φn,

no problems arise and we use the objective (4) directly since the sensitivities of the squared eigenfrequency with respect
to a design parameter te are then given by:

dω2

dte
= φT (

dK
dte

− ω2 dM
dte

)φ, (5)

assumed that the eigenvector have been normalized so that φT Mφ = 1. In the case of multiple eigenvalues we cannot
use (5) to find the sensitivities. The extended method is presented in [3] and used more recently in [4], and with this
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Figure 1. Eigenfrequency optimization of a 2D domain with two different materials, the design domain is a square that have no
supports (free boundary conditions); (a) the result when maximizing the gap between 2nd and 3rd eigenfrequency, (b) 8th and 9th
eigenfrequency, (c) 12th and 13th eigenfrequency.

method it is now possible to find the sensitivities of multiple eigenfrequencies. There is however still a problem because
the sensitivities are given for specific eigenvectors that vary for each design parameter. It is therefore difficult to solve the
optimization problem as formulated in (4). As an alternative formulation we propose to use a double bound formulation.
The standard bound formulation is used to reformulate a min-max problem. Instead of minimizing the maximum value of a
given quantity, a new variable is introduced which is minimized subject to the constraint that the value of the given quantity
should be less than this variable. The present optimization problem of maximizing the gap between two eigenfrequencies
is reformulated as:

maxte
J = C1 − C2

subject to: ωn+i ≥ C1 i ∈ [1, nu]
ωn+1−j ≤ C2 j ∈ [1, nl]

(6)

Penalization
The basis of topology optimization with a material interpolation scheme is to assign constant material properties to each
element in the finite element model and then to associate these material properties with continuous design variables. The
simplest interpolation of the material coefficients A and B when using two materials is done using a linear approach:

Ae(te) = A1 + te(A2 − A1), Be(te) = B1 + te(B2 − B1), (7)

where te is the element design parameter which takes values between 0 and 1. This is however not appropriate when
optimizing eigenfrequencies. In [5] it was noted that the important aspect is not the interpolation of the stiffness (here
coefficient A) or the interpolation of the mass (here coefficient B) but the interpolation of the eigenfrequency. The squared
eigenfrequency ω2 is by the Rayleigh quotient given as "stiffness divided by mass". A first choice would then be to make
an interpolation of the squared eigenfrequency which is a linear function of the design parameter te. This will however
still not give a 0-1 design i.e. a design with no intermediate material. We must therefore make a penalization that will drive
the design to a final 0-1 result. It is possible to make an interpolation/penalization function that will work for an objective
where we want to maximize an eigenfrequency but this will not work for a minimization of an eigenfrequency. In the
objective of (6) we both have to maximize one eigenfrequency and at the same time minimize a second eigenfrequency
this cannot be achieved by one penalization function. To overcome this problem we apply a method where the sensitivities
related to the constraints with C1 in (6) are calculated using one penalization function and the sensitivities related to the
constraints with C2 are calculated using a second penalization function.

EXAMPLES

In figure 1 we show the results of maximizing the gap between three different sets of eigenfrequencies of a square domain,
black and white corresponds to the two different materials.
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