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Summary The optimum layout of unconstrained damping layer on beams is obtained using an equivaent tiffness approach and finite
element formulation. The Ross, Ungar and Kerwin(RUK)'s formula is introduced to represent the equivalent complex modulus of
the damping layer and beam. The fractional derivative model describes the dynamic characteristics of viscoelastic materials in
order to include the non-linearities of real materials with respect to frequency and temperature. Using the equivalent stiffness, a
finite beam element is developed and a nonlinear eigenvalue problem is solved for a beam with the unconstrained damping |ayer
on it. The objective of optimization problem is to maximize the product of loss factor and eigenfrequency of a specified mode. Optimum
coverage is obtained by combining an analytic design sensitivity analysis and a gradient-based numerical search agorithm.

INTRODUCTION

The damping of structures is one of the most important factors in order to reduce the vibrations of structures. Authors
suggested a layout optimization formulation of unconstrained damping layer in Ref [1] that gives maximum loss factor
for a specified mode. However, it is noticed that the resonance frequency at the optimal damping layout could be fallen
considerably due to mass effect of the damping materials. In this study, optimum layout of unconstrained damping
layer on beams that maximizes both the loss factor and the eigenfrequency of a vibration mode will be identified using
anumerical search method.

ANALY SISOF UNCONSTRAINED VISCOELASTIC DAMPING LAYER

Dynamic characteristics of the viscodastic materials in frequency domain can be represented using the complex
modulus such as 7 = E € = E(1+i7n)g where i =yJ-1, and & and £ are the Fourier transforms of stress and

gtrain, respectively. E ,E and 7 are the complex modulus, the storage modulus and the loss factor, respectively.
Many environmental factors affect to the dynamic characteristics of the viscodastic materials. Particularly, the
complex modulus of the viscoelastic material is strongly dependent on temperature and frequency. In order to consider
the effects of temperature on damping behavior, there is a well-known temperature-frequency superposition principle
that says the temperature effects can be converted to those of frequency using a shift factor, o(T) where T is
temperature. The shift factor and temperature can be related by the Arrhenius equation such as
log(e(T)) = d, (YT —UT,). The fractional derivative model represents the damping elements as a time derivative of
order smaller than unity. The congtitutive equation of the fractional derivative moded of order one can be written as:
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and 0< <1, and a,,8,,c, and S are materia parameters. Then, the complex modulus of viscoelastic materials
obtained by the Fourier transforms of equations (1) are expressed as:

E' = E(L+in)={a, +a,(i2de(N)” }/{1+c,(i2da(T )’ } 2
Consider an unconstrained damping layer beam as shown in Fig. 1. The storage modulus and the loss factor of the
viscoelastic damping layer are E, and #,, respectively. The storage modulus, the loss factor and the second area

o(t) + ¢,D7o(t) = a,e(t) + a,D’s(t) where D’ o(t) =

moment of the base beam are E,,;, and 1,, respectively. The equivalent complex flexura rigidity, E | , of the
unconstrained beams by RUK’ s equivalent rigidity method is written in the form:

E'I/EI, =1+ h®+3(1+h)’e h/(1+€h) ©)
where h=H,/H, , and € =E,/E, . The unconstrained damping layer beams can be modeled using a finite beam

element formulation with the equivalent flexural rigidity. Following standard finite element formulation procedure
with the equivalent flexural rigidity, one can define the corresponding eigenval ue problem as follows.

[KHy}=cIMm ]y} @)
where [K]=[Kq]+i[K, ]=[KeJ1+i7) and [M] and Viscodatic Layer
[K] are the global mass and stiffness matrices, respectively. -
Subscripts Re and Im mean the real and imaginary parts, | Es, N» | i H27
respectively, and, the vector, {y}, is the eigenvector and | Base Beam E, n, | iHl

¢(=w® =(2f)*) is the egenvalue. The eigenvalue Fig. 1. Unconstrained damping |ayer beam



problem of Eg. (4) is nonlinear equations because the

stiffness matrix is a function of frequency due to the ~

viscoelastic damping layer. In order to solve the nonlinear
eigenvalue problem of Eg. (4), an iteration procedure is
necessary’. The loss factor of a structure for a vibration
mode is defined as:

P P P
n*=YnUg /D Ug :anuej/u
j=1 j=1 j=1

where 7% isthelossfactor of the k-th mode, p is the number
of finite elements, 7; isalossfactor of thej-th element, and
U

©)

4 isthestrain energy of thej-th finite element.
SENSITIVITY ANALYSISAND LAYOUT
OPTIMIZATION OF DAMPING LAYER

Assuming a uniformly-coated damping layer for a practical
consideration, the optimal design problem of the
unconstrained damping layout for a specified k-th mode on
beams can be defined as follows.

Find thedesignvariables b suchthat

maximize 7*(b; fT)xc* subject to b, <b<b, &
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Fig. 2. A clamped-free beam
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Fig. 3. Variation of loss factor and resonant frequency
with respect to coverage of damping layer (h=1)
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where b is the design variables and b, and b, are the lower and upper bounds of the design variables. Design
sensitivity of the loss factor can be obtained from Egs. (2), (3) and (5) using the chain rule as follows.

dnk/dbz{_zm:{dni (b, £,T)/db-U 4 +7, -dU 4 /db}—5* -dU/db} /U

dy, (b, )/do = 37, /ob+ 3, /3 - df /db where dn, /of = (Im{oE” /of )- Re(E" ) -

Egs. (7) and (8) can be calculated using the following i-th eigenval ue and eigenvector sensitivity formulae.
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Therefore, in order to obtain the loss factor sensitivity information, it is necessary to solve one eigenvalue problem,
one eigenvalue sensitivity analysis and one eigenvector sensitivity analysis. To validate the optimization formulation

of the unconstrained damping layer beams, a numerical example is introduced as shown in Fig. 2. In Fig. 2 a

viscoel astic damping material, LD-4007, is bonded on an aluminum beam. The damping-treated beam is modeled with

20 beam elements. Fig. 3 shows variation of the loss factor and the first resonant frequency. As shown in Fig. 3, the

resonant frequency goes down before the loss factor reaches to the maximum. Optimal lengths of the unconstrained
damping layer that gives maximum product of the loss factor and eigenfrequency for the first mode are determined

using a gradient-based search algorithm. The design variable is the length of the damping layer. Fig. 4 shows the

optimal coverage does not vary considerably contrary to the case of maximum loss factor only in Ref. [1].

CONCLUSIONS

Optimal damping treatment layouts on the unconstrained
beams are identified according to the thickness ratios and
the environmental temperatures. The optimization results
show that the proposed formulation is effective for real
viscoel astic damping materials.
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Fig. 4. The optimum coverage of damping layer and the
corresponding resonant frequency for the first mode



