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Summary The optimum layout of unconstrained damping layer on beams is obtained using an equivalent stiffness approach and finite 
element formulation. The Ross, Ungar and Kerwin(RUK)’s formula is introduced to represent the equivalent complex modulus of 
the damping layer and beam. The fractional derivative model describes the dynamic characteristics of viscoelastic materials in 
order to include the non-linearities of real materials with respect to frequency and temperature. Using the equivalent stiffness, a 
finite beam element is developed and a nonlinear eigenvalue problem is solved for a beam with the unconstrained damping layer 
on it. The objective of optimization problem is to maximize the product of loss factor and eigenfrequency of a specified mode. Optimum 
coverage is obtained by combining an analytic design sensitivity analysis and a gradient-based numerical search algorithm. 

 
INTRODUCTION 

 
The damping of structures is one of the most important factors in order to reduce the vibrations of structures. Authors 
suggested a layout optimization formulation of unconstrained damping layer in Ref [1] that gives maximum loss factor 
for a specified mode. However, it is noticed that the resonance frequency at the optimal damping layout could be fallen 
considerably due to mass effect of the damping materials. In this study, optimum layout of unconstrained damping 
layer on beams that maximizes both the loss factor and the eigenfrequency of a vibration mode will be identified using 
a numerical search method. 
 

ANALYSIS OF UNCONSTRAINED VISCOELASTIC DAMPING LAYER 
 
Dynamic characteristics of the viscoelastic materials in frequency domain can be represented using the complex 

modulus such as εηε )(EEσ
* i+== 1  where 1−=i , and σ   and ε are the Fourier transforms of stress and 

strain, respectively. E,E*  and η  are the complex modulus, the storage modulus and the loss factor, respectively. 

Many environmental factors affect to the dynamic characteristics of the viscoelastic materials. Particularly, the 
complex modulus of the viscoelastic material is strongly dependent on temperature and frequency. In order to consider 
the effects of temperature on damping behavior, there is a well-known temperature-frequency superposition principle 
that says the temperature effects can be converted to those of frequency using a shift factor, (T)α  where T is 

temperature. The shift factor and temperature can be related by the Arrhenius equation such as 
( )01 T1T1d(T))log( −=α . The fractional derivative model represents the damping elements as a time derivative of 

order smaller than unity. The constitutive equation of the fractional derivative model of order one can be written as: 
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and 10 << β , and 110 c,a,a  and β  are material parameters. Then, the complex modulus of viscoelastic materials 

obtained by the Fourier transforms of equations (1) are expressed as: 
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Consider an unconstrained damping layer beam as shown in Fig. 1. The storage modulus and the loss factor of the 
viscoelastic damping layer are 2E �and 2η , respectively.  The storage modulus, the loss factor and the second area 

moment of the base beam are 11 η,E  and� 1I , respectively. The equivalent complex flexural rigidity, IE* , of the 

unconstrained beams by RUK’s equivalent rigidity method is written in the form: 
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where 12 HHh = , and *
1

*
2

* EEe = . The unconstrained damping layer beams can be modeled using a finite beam 

element formulation with the equivalent flexural rigidity. Following standard finite element formulation procedure 
with the equivalent flexural rigidity, one can define the corresponding eigenvalue problem as follows. 
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where [ ] [ ] [ ] [ ]( )ηiKKiKK +=+= 1ReImRe  and [ ]M  and 

[ ]K  are the global mass and stiffness matrices, respectively. 
Subscripts Re and Im mean the real and imaginary parts, 
respectively, and, the vector, { }y , is the eigenvector and 

)f)(( 2πως 22 ==  is the eigenvalue. The eigenvalue 
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Fig. 1. Unconstrained damping layer beam 



problem of Eq. (4) is nonlinear equations because the 
stiffness matrix is a function of frequency due to the 
viscoelastic damping layer. In order to solve the nonlinear 
eigenvalue problem of Eq. (4), an iteration procedure is 
necessary1. The loss factor of a structure for a vibration 
mode is defined as:  
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where kη  is the loss factor of the k-th mode, p is the number 

of finite elements, jη  is a loss factor of the j-th element, and 

ejU  is the strain energy of the j-th finite element. 

 
SENSITIVITY ANALYSIS AND LAYOUT 
OPTIMIZATION OF DAMPING LAYER 

 
Assuming a uniformly-coated damping layer for a practical 
consideration, the optimal design problem of the 
unconstrained damping layout for a specified k-th mode on 
beams can be defined as follows. 
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where b  is the design variables and Lb  and Ub  are the lower and upper bounds of the design variables. Design 

sensitivity of the loss factor can be obtained from Eqs. (2), (3) and (5) using the chain rule as follows. 
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Eqs. (7) and (8) can be calculated using the following i-th eigenvalue and eigenvector sensitivity formulae. 
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Therefore, in order to obtain the loss factor sensitivity information, it is necessary to solve one eigenvalue problem, 
one eigenvalue sensitivity analysis and one eigenvector sensitivity analysis. To validate the optimization formulation 
of the unconstrained damping layer beams, a numerical example is introduced as shown in Fig. 2. In Fig. 2 a 
viscoelastic damping material, LD-4002, is bonded on an aluminum beam. The damping-treated beam is modeled with 
20 beam elements. Fig. 3 shows variation of the loss factor and the first resonant frequency. As shown in Fig. 3, the 
resonant frequency goes down before the loss factor reaches to the maximum. Optimal lengths of the unconstrained 
damping layer that gives maximum product of the loss factor and eigenfrequency for the first mode are determined 
using a gradient-based search algorithm. The design variable is the length of the damping layer. Fig. 4 shows the 
optimal coverage does not vary considerably contrary to the case of maximum loss factor only in Ref. [1]. 
 

CONCLUSIONS 
 

Optimal damping treatment layouts on the unconstrained 
beams are identified according to the thickness ratios and 
the environmental temperatures. The optimization results 
show that the proposed formulation is effective for real 
viscoelastic damping materials. 
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Fig. 2. A clamped-free beam 
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Fig. 3. Variation of loss factor and resonant frequency 
with respect to coverage of damping layer (h=1) 

-40 -20 0 20 40 60 80 100
0.0

0.1

0.2

0.3

0.4

 h=0.1
 h=0.5
 h=1.0
 h=2.0

Temperature(OC)

C
ov

er
ag

e[
m

]

10

20

30

40

50

F
req

uency[H
z]

Fig. 4. The optimum coverage of damping layer and the 
corresponding resonant frequency for the first mode 
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