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WITHIN THE CORE LAYER OF A SANDWICH PLATE.
RELAXED FORMULATION AND ITS COMPUTATIONAL ALGORITHM
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Summary The paper deals with the minimum compliance problem of a sandwich plate with soft core. The aim is to find an optimal
layout of two isotropic materials within the core layer. In the relaxed formulation the core is modelled by a 1* rank laminated
composite.

Deformation of a sandwich plate of a soft core, see Fig.1, transversely loaded, will be modelled by the Reissner model
of 1947, see Sec. 6.3 of Ref.[5]. The bending stiffnesses (D”‘“”), a, B, A, 1t=12, depend on the properties of the faces
and on the distance 2¢. The aim is to optimize the core the transverse shear moduli of which determine the effective
stiffnesses (H K ) The moments (M K ) and the transverse forces (Q") are interrelated with the deformation measures
by

M7 :D““”gw((p), 0 :H"ﬂyﬁ(w,(p) (1)
where @ =(¢71,¢72)is a vector of the angles of rotation of the transverse cross sections and w represents the plate
deflection; the deformations ¢, ((p) are defined as symmetric part of the gradient of @ and y, (w,q)): w,,+@, . Here

comma means differentiation with respect to x, or x, .
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Fig.1 Sandwich plate Fig.2 General 2™ rank microstructure of the core layer
The variational equilibrium equation of the plate has the form
[[M7,@)+07,(5.9) Jx=s(w)  vEm@er /(W)= [qlefilrhx )

where ¢ represents the transverse loading, ) is a plate middle plane and ¥ represents the space of kinematically
admissible displacement fields. Assume that the core is formed transverse homogeneously of two kinds of isotropic core
materials labelled by y=12. Assume that these materials occupy the domains Q within Q; the characteristic
functions of the domains being denoted by y, . Let the areas |Qy| =C, be prescribed. The problem of minimizing the

compliance of the plate is put in the form
min{/(Ww  solves (1, (2)and|Q,| = C, | 3)

The relaxation of the above problem means admitting the characteristic functions y, to tend to their weak limits

m,eL” (Q; [0,1]), see Diaz et al.[4] and Lewinski and Telega [5]. Let G;” be a set of tensors H " determining the
transverse shear stiffness of the composite material of the core, of two-phase periodic structure, according to the
formulae of the homogenization theory, under the assumption of the area fraction of the material 2 being given as m, .
Let us define the effective potential for the transverse forces

ZVK(y,mz) = max{y : (Hy)‘H € GP‘”} “4)

my
and note that its complete characterization is known by analogy with the conductivity problem. Thus the effective

constitutive relationships read
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Fig.3 Optimal distribution of the area fraction m, Fig. 4 Types of microstructures:

1* rank laminate is grey; stronger isotropic material is black
The relaxed problem assumes the form

min{f(w)

w  solves (2),(4),(5),m, € L”([0,1]), j m,dx = cz} (6)

The theory of the problem of minimal compliance of two-material plates teaches us that the 2™ rank microstructures, as
shown in Fig.2, suffice to achieve the exact result. However, it can be proved that in the case considered one can

confine the design to the 1* rank laminated microstructure of the core. Thus the set G refers to 1* rank laminates,

characterized by the design variables w,,¢ , with 8, =0. The effective moduli (H K ) are determined by the formula of

Tartar, see Sec. 5.6.4 in Lewinski and Telega [5], applied iteratively. The equilibrium problem is solved with using the
DSG finite element, see Bletzinger et al.[2], free of shear locking and satisfying the convergence consistency criteria of
Strang. The optimization has been performed with using the COC method and the updating schemes reported in
Bendsee [1]. A similar algorithm has been previously applied to thin plates in Czarnecki and Lewinski [3]. The optimal
inclination of ribs is given by the formula

1 2H?
d=x—2 X :—arctan[—“zJ @)
) H)'—H!

where y = A(el,y) and (H @ ) refer to the basis (e?,eg), see Fig.2. Thus we find the optimal distributions of m, in the
core layer, see Fig.3. The optimal layout of the core is composed of the weaker material, of the stronger material and of
laminates of 1* rank.

The layouts in Figs.3,4 refer to the square plate (AB=5.0 m., ¢ = 16 cm, d = 0.3 cm,) clamped along the sides
AB, CD and supported along BC, DA such that there w=0,¢, =0. The plate is subjected to a uniform transverse

loading. The data are specifically chosen. The faces are made of an isotropic material of moduli £=210.0 GPa, v=0.21.
The core layer is made of two kinds of regular honeycombs of effective transverse shear moduli assessed here by the
known formula x, =0.577:G, /1 ; ¢ = 0.02 cm represents the thickness of the honeycomb wall, while /= 1.00 cm is a

length of the side of a honeycomb cell and G; = 15.22 GPa, G, =26.58 GPa are shear moduli of two materials of the
honeycomb. The shear stiffnesses of the plate are computed by #* = 6%, H,=(2b" /c)p,, b=c+d/2, see Sec.6.3 of

[5], where the details of computing the bending stiffnesses can be found. The stronger material occupies 0.51 part of the
domain Q . The computations have been performed with using the updating scheme, see [1], with the damping factor
n=0.75 and the move limit ¢ =0.015. The optimal layouts of the area fraction of both the materials compare

favorably with 3D layouts found within the relevant relaxed formulation by homogenization, for various boundary
conditions.
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