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Summary The problem of topology optimization is considered elastic contact problems. The formulae for the first term of asymp-

totics for energy functionals are derived and verified numerically. The topological differentiability of solutions to variational

inequalities is established using the so-called outer asymptotic expansion for solutions of contact problems in elasticity with respect

to singular perturbation of geometrical domain by nucleation of small holes.

Introduction. In the engineering literature there are many results concerning the shape optimization of
contact problems in elasticity. The boundary variations technique for such problems is described in [4] in the
framework of nonsmooth analysis combined with the speed method. Nonsmooth analysis is necessary since
the shape differentiability of solutions to contact problems is obtained only in the framework of Hadamard
differentiability of metric projections onto polyhedric sets in the appropriate Sobolev spaces. However, to our
best knowledge, there is no general method for simultaneous shape and topology optimization [6] of contact
problems. The main difficulty in analysis of contact problems is associated with the nonlinearity of the non-
penetration condition over the contact zone which makes the boundary value problem nonsmooth. In the paper
we propose a method for numerical evaluation of topological derivatives for such problems.
The main idea we use to derive the topological derivatives for contact problems is the modification of the energy
functional by an appropriate correction term and subsequent minimization of the resulting energy functional
over the cone of admissible displacements. Such an approach leads to the outer approximations of solutions
to variational inequalities. The following step in asymptotic approximation of solutions is an application of
self adjoint extensions of elliptic operators [3] with asymptotic point conditions for the contact problems which
results in the asymptotically exact approximations. We point out that in the framework of self adjoint extensions
studied in [3] for linear problems, the approximate solutions with asymptotic point conditions at the center of
the hole O are critical points of the appropriate energy functional. We restrict ourselves to the case of outer
approximations of solutions. Such an approach is justified, by applications to numerical methods of topology
optimization. For linear problems, outer approximations are used e.g., in [1] for derivation of topological
derivatives for isotropic elasticity. However, the complete asymptotic analysis necessary to justify the derivation
of topological derivatives for general linear boundary value problems is performed in [2].

Contact problem in elasticity. The asymptotic analysis of 2D contact problems is performed in the frame-
work of linear elasticity. Such a contact problem in the domain Ωreads: Find u = u(Ω) = (u1, u2) and σ = (σ)ij ,
i, j = 1, 2, such that

−divσ = f in Ω , Cσ − ε(u) = 0 in Ω , u = 0 on Γ0 ,

uν ≥ 0, σν ≤ 0, σνuν = 0 στ = 0 on Γc .

The compliance functional for the contact problem is given by

J(Ω) =
1
2

∫

Ω

σ(u) : ε(u) dx−
∫

Ω

fu dx = −1
2

∫

Ω

fu dx

where Ω ⊂ IR2 is a given domain with the boundary ∂Ω = Γ0 ∪ Γc. We obtain the expansion of this functional

J(Ωρ) = J(Ω) + ρ2TΩ(O) + o(ρ2)

for ρ2 → 0, where Ωρ = Ω \ Bρ(O), Bρ(O) = {‖x‖ < ρ}, and TΩ(O) is the topological derivative of J(Ω) at
Ω for the nucleation of a small hole Bρ(O) with the center O ∈ Ω. To this end the contact problem in Ωρ is
considered: Find u = u(Ωρ) = (u1, u2) and σ = (σ)ij , i, j = 1, 2, such that

−divσ = f in Ωρ , Cσ − ε(u) = 0 in Ωρ , u = 0 on Γ0 , σν = 0 on Γρ , (1)
uν ≥ 0, σν ≤ 0, σνuν = 0 στ = 0 on Γc . (2)

We show that the solution to (1)–(2), denoted uρ, is conically differentiable with respect to the small parameter
ρ2 → 0, i.e.

uρ = u + ρ2q + o(ρ2) in Ω \B(ρ)



for small ρ2, where u is a solution to the problem in Ω. The conical differential q is given by the unique solution
of the auxiliary variational inequality: Find q ∈ S(u) such that

∫

Ω

σ(q) : ε(v − q) dx + b(q,v − q) ≥ 0

for all v ∈ S(u), where b(·, ·) is a bilinear form and S(u) is a cone, associated with the initial contact problem
in Ω. Our results are based on a conical differentiability of solutions to variational inequalities defined over
polyhedral convex sets [4]. These results are combined with an appropriate approximation procedure for the
energy functionals, which leads to the bilinear form b(·, ·).

Approximation of energy. We determine the modified bilinear form as a sum of two terms, as it is for the
energy functional, the first term a(v,v) defines the elastic energy in the domain Ω, the second term b(v,v) is a
correction term. The correction term is quite complicated to evaluate, and we do not provide its explicit form.
The values of the symmetric bilinear form a(ρ; ·, ·) in Ωρ are given by the expression

a(ρ;v,v) = a(u,u) + ρ2b(v,v) . (3)

The derivative b(v,v) of the bilinear form a(ρ;v,v) with respect to ρ2 at ρ = 0+ is given by the expression

b(v,v) = −2πev(0)− 2πµ

λ + 3µ

(
σIIδ1 − σ12δ2

)
, (4)

where all the quantities are evaluated for the displacement field v. The form of the first term in (4), new to our
best knowledge, is given in terms of line integrals over the circle ΓR. This circle of fixed radius surrounds the
hole B(ρ).

2πev(0) =
π(λ + µ)

π2R6

(∫

ΓR

(v1x1 + v2x2) ds

)2

+ (5)

+
µ

π2R6

(∫

ΓR

(
(1− 9k)(v1x1 − v2x2) +

12k

R2
(v1x

3
1 − v2x

3
2)

]
ds

)2

+

+
µ

π2R6

(∫

ΓR

[
(1 + 9k)(v1x2 + v2x1)− 12k

R2
(v1x

3
2 + v2x

3
1)

]
ds

)2

,

The values of σII , σ12, δ1, δ2 are calculated by means of similar integrals and k = (λ + µ)/(λ + 3µ). Such
expressions lead to very efficient numerical methods for the problem under consideration. Numerical results
confirm this conclusion.
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