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Summary The paper proves that the known methods of assessing an increment of strain energy due to the appearance of small
cavities in elastic solids lead to one equivalent result. The following approaches are discussed: the compound asymptotic method
by Mazja, Nazarov and Plamenevskii, the topological derivative method by Sokolowski and Zochowski and the method of Eshelby.
The result derived determines the characteristic function of the bubble method.
CHANGE OF ENERGY ACCORDING TO
MAZJA-NAZAROV-PLAMIENIEVSKII AND ESHELBY

The present paper refers to the problem of assessing a change of a shape functional due to the appearance of a
small cavity within the domain. The formulae expressing such changes play a crucial role in the evolutionary
methods of topology optimization, see [1]. Finding the stiffest layouts needs assessing the change of the com-
pliance or, equivalently, change of the elastic energy stored in the body. Let us start with the plane elasticity
problem. Assume that a plane body is subjected to self-equilibrated tractions of intensity p on 9. The elastic

energy stored in the body equals
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where v = (v1,v9) represents the displacement field caused by p. The stress field o is linked with the deforma-
tions by & = Ae and €(v) represents a symmetric part of Vv. Let us consider now the domain Q. = Q \ @,
where w, = {z | z/e € w}. We assume that 0 € w, w being a rescaled domain of the opening; ¢ is a small
parameter. The tractions p cause the displacement field u®. The elastic energy

1
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should be greater than £(Q) irrespective of the shape of the cavity w.. Note that the origin 0 lies within w,
for each £ > 0. We shall say that a hole w, nucleates at 0. The case of € = 0 refers to the case without any hole
within Q. Let us denote : €® = €(v)(0) for the deformation state at point 0 caused by the loading p.

The compound asymptotic method, exposed recently in Mazja et al.[4] leads to the following result
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where n = 2 and M = (M®*) will be called the Polya-Szegt tensor. The above result is reported without

proof in Movchan and Movchan [5]; the details of the derivation are given in Lewinski and Sokolowski [3]. Tensor
M characterizes the outer problem for w

find x*) defined in [R?\@ such that
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Here y = (y1,y2) parametrize the domain R*\@ ; e,yyd(v) represents the symmetric part of Vv with respect

to the Cartesian system (y1,ys); the Cartesian base vectors are denoted by e;,es. The vector fields x(**) are
uniquely determined. The components of M are given by
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where v = (v1,14) is a unit vector outward normal to dw and |w| represents the area of w. The tensor M is
negative definite under very weak assumptions of regularity of w, see Ref.[3].



The results (4)-(6) and (7)-(8) can be generalized to the 3D case. Then the exponent n = 3, see Eq.(3), the
contour integral in (8) is replaced by the surface integral; |w| stands for the volume of w. Moreover, one can
show that the known Eshelby formulae for the energy change are equivalent to the result .

CHANGE OF ENERGY FOUND BY THE TOPOLOGY DERIVATIVE METHOD
The topological derivative has been introduced by Sokolowski and Zochowski [9] in order to formulate necessary
conditions of optimality for optimum shape design problems. The topological derivative measures a change of
a functional caused by removing a small ball from the given domain. A method of computing the topology
derivative relevant to weakening the domain by a small cavity (or hole) of arbitrary shape is proposed e.g., in
Lewinski and Sokolowski [3]. The method is based on the velocity method of shape optimisation. The speed
vector field is chosen as a linear function in the space variable. This method can be applied for confirming the
formula (3) by a new manner. The final result has the form (3) with tensor M replaced by G given by
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for the 2D case. Here

@ (y) = x P (y) + EP)(y) , (10)
where
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Thus we have arrived at two seemingly different estimates of change of energy, since it is not easily seen why G
should be equal to M. It is, however, the case. The proof of the equalityG = M has been recently reported in
Ret.[6].
APPLICATIONS

Topological derivatives are used in numerical methods of topology and shape optimization [1], [2]. Modelling
of topological derivatives can be performed [6] by the selfadjoint extensions of elliptic operators with singular
potentials [8]. The latter replace the geometrical singularities with the prescribed precision, confirmed by
the error estimates. Moreover, new tools for the topology optimisation are provided by the exterior topology
derivatives [7] relevant to the case of adding new material to a feasible domain. Some examples of applications
are provided.
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