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SECONDARY BIFURCATIONS AND LOCALISATION OF BUCKLE PATTERNS
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Summary The phenomenon of localisation is reasonably well understood in quantum physics and fluid mechanics [1], but less so in
the area of structural mechanics. In this contribution we revisit the effect of secondary bifurcations on the post-buckling response of
a 3D system of elastically restrained beams. Our objective is to construct a uniform asymptotic expansions for the localised buckling
patterns experienced by this model by using a mixture of asymptotics (WKB techniques [2]) and numerics.

INTRODUCTION AND THEORETICAL STUDY

Many buckling problems for structures with large aspect ratio can be cast as� ��������
	�� ��
���� ��� ��
 (1)

where
� � � � � ������� ,

� ��� represents the bifurcation parameter, and 	�� ��
���� ��� is an ����� matrix, i.e., 	 � ��
!�"� �#�$�% ��&�� � �'� ; here (*) �,+ - is a small parameter. The dependence of 	 on
�

is usually associated with variable
mechanical/geometrical properties, or non-homogeneous pre-bifurcation states; certain secondary bifurcations usually
fall into this latter category, as we shall shortly see. The presence of inhomogeneities in equation (1) enriches the spectral
properties of the problem and calls for a special attention to certain transition points (also known as turning points). Such
points mark the transition between oscillatory and exponentially decaying regions in the solutions of (1), and in particular
they are responsible for the presence of localisation in these functions.

The model
The model adopted in this work is that discussed by Luongo in [3] (see also [4] for a related problem) and which we briefly
review next. Roughly speaking, we have in mind a simply supported planar truss consisting of two identical horizontal
beams connected by bars. The two beams are restrained against out-of-plane displacements by linear elastic springs; the
linking bars are assumed rigid in the

��.
–plane and infinitely flexible out-of-plane (see Figure 1). To a certain extent, the

model mimics the behaviour of thin-walled beams in compression in the sense that the system can buckle either in an
overall mode (a “long-wave" in the

��.
–plane) or in a local mode (a “short-wave" out-of-plane). It has been known for

a long time that the extreme imperfection-sensitivity of shell structures is mostly due to an interaction between linearly
independent simultaneous, or nearly simultaneous, such global and local buckling modes.
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Figure 1. A system of two elastically restrained beams: lateral view (bottom) and axial perspective (top).

Governing equation and asymptotic analysis
By taking into account the long-wave buckling mode and assuming that the overall and local buckling modes correspond
to closely spaced load values, one finds that the local instability is described by the (rescaled) boundary-value problem�;:1< : /< � :>= 5 � 2@? � -BA�C"��<
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where / is the out-of-plane displacement associated with the bottom beam. Here � is a parameter depending on the
geometrical and mechanical properties of the truss,

�
corresponds to a rescaled loading parameter, while C accounts for

the closeness of the critical loads corresponding to the two modes of instability. It can be shown that the turning points
for (2) are the two solutions

� 0 and
� 2 in � ( 
NM � of the equation EGF H � � � � C � � . A solution of (2) is sought in the form/ � ��
 �#� ��� � � �����	��
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where � � � � ��� � � � � = � 0�� 2 � 0 � � � = � � 2 � � � =������ , � � � � = � � 0 = � 2 � 2 =������ , and
� � � � 0�� 2 � � A � � � . Above� � � � ( 
NM � is supposed to be the centre of localisation, the point where most of the energy is concentrated. Parameter

� �
is meant to characterise the oscillation frequency of the spatial eigenmode, while  � � � , the imaginary part of � �"! , gives
the decay rate of the solution amplitude. Thus, localisation requires

� �
to be real and  � � �$# ( ; also, we assume tacitly

that
� 0 and

� 2 are close to each other, precisely % � 0 A � 2 %'& � 0�� 2 . Standard calculations carried out in [5], lead to the
determination of all unknowns in (3).

NUMERICAL EXPERIMENTS

It is found that the eigenvalues of (2) are given by
�)(+*-, � C = �/. C � - = 5�0 � =�1 � � 2 � , where the lowest eigenvalue

corresponds to
0 � ( . These eigenvalues are asymptotically double and to each of them there correspond two eigenmodes7 ( ��2 3 , � ��
 ��� � ?54�6 E D 5 � A M5 � =87 ��3 J =81 � � 0�� 2 � L ���	� 
 A . C � 5 � A M � 2-�9;� � 
 (4)

where : � - 
 5 ; the phase-angles 7 �;3 are found by symmetry considerations as 7 ��� � M (symmetric mode) and 7 � 0 �M � 5
(antisymmetric mode). Two typical comparisons between this formula and our numerical runs of (2) are included

below. The core of the buckling patterns is described quite satisfactorily by (4), although the tails of the solution in �=< �
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Figure 2. Comparisons between numerical solutions (solid line) and the asymptotic predictions (dotted line) for
the first symmetric eigenmodes given by (4); FHGJI corresponds to KMLONQP R , while FHSTI is obtained for KULVN�P NWR .
In both pictures X-LYNQP NWZ .

are poorly approximated. It turns out that this is due to the fact that the scaling assumption for the distance between the
two turning points of (2) is violated in Figure 2 �=< � ; details on this subtle point are provided in [5].

CONCLUSIONS

In contrast to other works on similar topics [3, 4], the approach taken here succeeds in producing a compact uniform
asymptotic expansion for the buckling patterns, valid over the entire span of the truss. We believe that more complex solid
mechanics problems involving secondary bifurcations are susceptible to a similar analysis, and this is currently under
investigation.
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