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Summary This work is devoted to a unified method for the analysis of the elastoplastic bifurcation and post-bifurcation of structural
elements such as beams, plates and shells. In each case, the same bifurcation equation is solved, giving rise to analytical relations for
the critical load, the eigenmode as well as the initial slope of the bifurcating branch which is essential for the stability analysis.

THE FRAMEWORK

The bifurcation analysis is carried out using the three-dimensional total Lagrangian formulation, where the Green strain is
decomposed additively and the elastic strains are assumed small so that the constitutive law for the elastic behavior can be
represented by the Saint-Venant-Kirchhoff relation. The plasticity is described within the frame of generalized standard
materials, obeying the von Mises yield criterion and a linear isotropic hardening.
It is assumed that a fundamental equilibrium pathλ 7→ ~uf (λ) is known, which is the displacement solution of the
elastoplastic problem under increasing loadλ. Moreover, at a critical instanttc, it is assumed that there exists a bifurcating
solution denoted~u, which is described by the asymptotic expansion :

λ = λc + λmξ + o(ξ) ~u = ~uf (λ) + ξ ~X + o(ξ)

where the perturbation parameterξ corresponds to the projection of the solution onto the buckling eigenmode.
Assuming the so-called tangent modulus hypothesis and uniqueness of the eigenmode, the critical loadλc and the eigen-
mode ~X are solutions of the bifurcation equation [1],[2] :

∀ δ~u,

∫

Ω

∇T δ~u : K i(~uf (λc)) : ∇ ~XdΩ = 0

whereΩ is the region occupied by the body,K i is either one of the following expressions, depending on the point belongs
to the elastic or plastic region :

Ke = F.D.FT + (I .Σ)T or Kp = Ke −MT ⊗M , M =
D : ∂f

∂Σ√
h + ∂f

∂Σ : D : ∂f
∂Σ

.FT

In the above,F denotes the gradient of the deformation,D the elasticity tensor,Σ the second Piola-Kirchhoff stress tensor
(symmetric),I the fourth-order unit tensor,f the yield function andh the hardening modulus.
In the case where the elastic unloading zone at bifurcation is reduced to a single point, the initial slopeλm of the bifur-
cating branch is given by :

λm = min{λ | ∀ x ∈ Ω, λM c : ∇~uf ,λ (λc) + M c : ∇ ~X ≥ 0} = max
x∈Ω

(
− M c : ∇ ~X

M c : ∇~uf ,λ (λc)

)

TIMOSHENKO BEAM UNDER AXIAL COMPRESSION

Throughout the sequel, we assume that the stress state in the body is uniaxial, directed in thex axis, and that the yield
stressσ0 is small enough for the buckling to occur when the body is wholly plastic.
Consider a straight cantilever beam with length L, constant cross-section areaS, area moment of inertiaI and tangent
modulusET . The beam is subjected to a compressive loadλ and its kinematics is described by the Timoshenko model.
The fundamental solution writes, when the beam is wholly plastic (λ ≥ σ0S) :

~uf = −x

S

(
λ− σ0S

ET
+

σ0S

E

)
~x

Assuming small pre-critical strains, the gradient tensorF can be replaced with the identity tensor. The components
(U ,V,Θ) defining the eigenmode are obtained from the bifurcation equation which simplifies as follows :∀ δU, δV, δθ,

∫

Ω

[
ET (U ,x−yΘ,x )(δU,x−yδθ,x ) + µ(Θ− V,x )(δθ − δV,x )− λc

S
(U ,x−yΘ,x )(δU,x−yδθ,x )− λc

S
V,x δV,x

]
dΩ = 0



It yields three scalar equations :

ET SU ,x = 0 µSΘ− µSV,x +λcV,x = 0 ET IΘ,xx +µSV,x−µSΘ = 0

Taking into account the boundary conditions gives the critical load and the eigenmode :

λc =
π2ET I

4L2

1 + π2ET I
4L2µS

U = 0 V =
(

1 +
π2ET I

4L2µS

)
2L

π

(
1− cos

πx

2L

)
Θ = sin

πx

2L

The well-known critical load for a Bernoulli beam is readily obtained from the above result. Moreover, one can get the
initial slope of the bifurcating branch :λm = 3λc.

PLATE UNDER UNIAXIAL COMPRESSION

Consider a rectangular plate with dimensionsa along~x, b along~y (a > b or a < b) and thicknessh. The plate is
subjected to a compressive stressΣ normal to sides of lengthb and its kinematics is described by the Love-Kirchhoff
model. Denotingλ = −Σ > 0, the fundamental solution writes :

~uf = −
(

λ

E
+

λ− σ0

h

)
x~x +

(
νλ

E
+

λ− σ0

2h

)
y~y

Solving the bifurcation equation shows that the out-of-plane componentW of the eigenmode satisfies :

t2(αW,xxxx +γW,yyyy +(2β + 4µ)W,xxyy ) + 12λcW,xx = 0

where α =
2µ

D
(E + 4h) β =

4µ

D
(E + 2νh) γ =

8µ

D
(E + h) with D = 2µ(5− 4ν) + 4h(1− ν)

By assuming a sinusoidal mode along~x and~y, one gets the critical load and the eigenmode :

λc =
t2π2

12

(
p2α

a2
+

q4γa2

p2b4
+

q2(2β + 4µ)
b2

)
U = 0 V = 0 W = sin

pπx

a
sin

qπy

b

The wave numbers corresponding to the smallest critical load arep = 4
√

γ
α

a
b along the load direction andq = 1. In

particular, whena = b = 1 the above result leads to the value given in [3] :λc = Et2π2

12

(
2

1+ν + 9+
ET
E (8ν−1)

(5−4ν)−ET
E (1−2ν)2

)
.

As in the beam case, one can also obtain the initial slope of the bifurcating branch :λm =
tπ2

(
2p2

a2 − q2

b2

)
EET

5E+ET (2ν−1) .

TUBE UNDER AXIAL COMPRESSION

Let us now consider a circular tube with lengthl along axis~x, radiusR and thicknesst, subjected to a compressive axial
stressΣ. Denotingλ = −Σ > 0, the fundamental solution reads in the cylindrical basis :

~uf = −
(

λ

E
+

λ− σ0

h

)
x~x + R

(
νλ

E
+

λ− σ0

2h

)
~er

Solving the bifurcation equation in the axisymmetric case yields the coupled equations :

αtU ,x +
β

R
tW = 0 α

t3

12
W,xxxx +λctW,xx +

γ

R2
tW +

β

R
tU ,x = 0

In the case of simply supported edges, the critical load can be computed by considering a sinusoidal eigenmode. After

optimizing the wave number, one obtainsλc = Et
R

√
4h

3[(5−4ν)E+4h(1−ν2)] as well as the eigenmode :

U =
l

nπR

2(E + 2νh)
E + 4h

(
cos

nπx

l
− 1

)
V = 0 W = sin

nπx

l
with n =

l

π
4

√
48h[(5− 4ν)E + 4h(1− ν2)]

R2t2(E + 4h)2

The initial slope of the bifurcating branch isλm = 2Eh[5E+4h+8νh+
√

48h[(5−4ν)E+4h(1−ν2)]]

R(E+4h)(5E+4h+2νh) .
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