XXI ICTAM, 15-21 August 2004, Warsaw, Poland

STABILITY OF PARAMETRICALLY EXCITED STRUCTURES: NEW RESULTS

Alexander P. Seyranian
Institute of Mechanics, Moscow State Lomonosov University,
Michurynski pr.1, Moscow 119192, Russia

Summary Linear dynamical systems with many degrees of freedom with periodic coefficients also depending on constant parameters
are considered. Stability of the trivial solution is studied with the use of the Floquet theory. First and second order derivatives of the
Floquet matrix with respect to parameters are derived in terms of matriciants of the main and adjoint problems and derivatives of the
system matrix. It is shown how to use this information in gradient procedures for stabilization or destabilization of the system. Then,
linear vibrational systems with periodic coefficients depending on three independent parameters: frequency and amplitude of
periodic excitation, and damping parameter are considered with the assumption that the last two quantities are small. For arbitrary
matrix of periodic excitation and positive definite damping matrix general expressions for regions of the main (simple) and
combination resonances are derived. Two important specific cases of excitation matrix are studied: a symmetric matrix and a
stationary matrix multiplied by a scalar periodic function. It is shown that in both cases the resonance regions are halves of cones in
the three-dimensional parameter space with the boundary surface coefficients depending only on the eigenfrequencies, eigenmodes of
the conservative system and system matrices. As an example of the developed theory Bolotin's problem on dynamic stability
of a beam loaded by periodic bending moments is solved.

DERIVATIVES OF THE FLOQUET MATRIX WITH RESPECT TO PARAMETERS

We consider a system of linear differential equations

x = Gx, 1)
where G = G(¢,p) is a real square matrix of dimension 7, which is smoothly depending on a vector of real
parameters P =(py, P5,..-P,) and is a continuous periodic function of the time G(¢,p) =G(t+7T,p), T being a
period. We denote linear independent solutions of system (1) as Xy (#), X5 (¢),..., X, (f) and form out of them a
fundamental matrix X(¢) = [X1 (), x5 (2),... ,Xm(t)]. The X(¢) matrix satisfying the equations

X=GX, X(0)=I, )
where I is the identity matrix of dimension m, is called a matriciant, and the matrix F = X(7) is called a monodromy
matrix.

According to the Floquet theory, see Nayfeh and Mook [1], stability of system (1) is determined by multipliers
(eigenvalues of the monodromy matrix): if all the multipliers for their absolute value are less than one, the system is
asymptotically stable, and if at least one of them is greater than one, the system becomes unstable.

Now we assume that the vector of parameters takes a variation p =p, + Ap. Hence, the G matrix, and therefore the
matriciant X(#) obtain variations. This accordingly leads to a change of the monodromy matrix F . The formulas for the

first and second derivatives of a monodromy matrix with respect to parameters are derived in the form of integrals over
the period
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where the zero subscript means that the correspondlng value is taken at p=p,. Note that to find derivatives (3) and (4) it

is necessary to know only the matriciants X¢(#) and the derivatives of the G matrix with respect to the parameters
taken at p = p, . Using derivatives (3) and (4) a variation of the monodromy matrix can be given in the form
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Knowing the derivatives of the monodromy matrix we can calculate the value of thls matrix in the vicinity of the initial
point p  , and therefore estimate behavior of the multipliers responsible for the stability of system (1) when the problem
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parameters are changed. This is what we call sensitivity analysis of multipliers. Analysis of multipliers provides
information for determining stability and instability regions in the parameter space.

MECHANICAL EXAMPLE

As an example of the developed theory, we consider Bolotin's problem on dynamic stability of the trivial solution (plane
position) of a beam, see Bolotin [2]. The elastic beam is assumed to be simply supported at its ends and loaded by the
periodic bending moments M (Q¢) = ¢ (£2¢) in the plane of its maximum stiffness, where @(¢) is a 27T -periodic

function, Fig. 1. Bending-torsional vibrations off this plane are described by the equations
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Here, W(X,1) is the transverse deflection of the beam; @(x,?) and r are the torsion angle and the radius of inertia for
the beam's cross section, respectively; EJ and GI are the bending and torsion stiffnesses of the beam, respectively; m is

the mass per unit length of the beam; ¥ is the parameter of dissipative force (viscous friction coefficient); and d, and

d, are fixed constants defining the bending and torsional viscous friction forces.
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Figure 1. An elastic beam loaded by periodic bending moments.

The boundary conditions take the form

_'w
ox?
where / is the beam length. The problem consists in finding parametric resonance domains in the three-dimensional
parameter space J,Q, and y . It turns out that the regions of the difference-type combination resonance are empty, and

x=0, /:

=0=0 )

only summation-type resonance takes place. The regions of the summation-type combination resonance at frequencies
closeto Q) =(w,, +®,,)/k, k=1,2,... are determined by the formula
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where @, and b, are the Fourier coefficients of the periodic function ¢(¢), and @, ,®,, are the eigenfrequencies of the

dydyy® - AQ? <0 ®)

conservative (undamped) system. Other mechanical examples including determination of the parametric resonance
regions of elastic columns of non-uniform cross-section loaded by longitudinal periodic forces, and column optimization
problems are presented in Seyranian, Solem and Pedersen [3], Seyranian [4], and Mailybaev and Seyranian [5].
Extended discussion of periodically excited structures and mechanical systems is given in a recent book by Seyranian
and Mailybaev [6].
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