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STABILITY OF PARAMETRICALLY EXCITED STRUCTURES: NEW RESULTS

Alexander P. Seyranian
Institute of Mechanics, Moscow State Lomonosov University,

Michurynski pr.1, Moscow 119192, Russia

Summary Linear dynamical systems with many degrees of freedom with periodic coefficients also depending on constant parameters
are considered. Stability of the trivial solution is studied with the use of the Floquet theory. First and second order derivatives of the
Floquet matrix with respect to parameters are derived in terms of matriciants of the main and adjoint problems and derivatives of the
system matrix. It is shown how to use this information in gradient procedures for stabilization or destabilization of the system. Then,
linear vibrational systems with periodic coefficients depending on three independent parameters: frequency and amplitude of
periodic excitation, and damping parameter are considered with the assumption that the last two quantities are small. For arbitrary
matrix of periodic excitation and positive definite damping matrix general expressions for regions of the main (simple) and
combination resonances are derived. Two important specific cases of excitation matrix are studied: a symmetric matrix and a
stationary matrix multiplied by a scalar periodic function. It is shown that in both cases the resonance regions are halves of cones in
the three-dimensional parameter space with the boundary surface coefficients depending only on the eigenfrequencies, eigenmodes of
the conservative system and system matrices. As an example of the developed theory Bolotin's problem on dynamic stability
of a beam loaded by periodic bending moments is solved.

DERIVATIVES OF THE FLOQUET MATRIX WITH RESPECT TO PARAMETERS

We consider a system of linear differential equations
Gxx = ,                                                                                        (1)

where )p,(GG t=  is a real square matrix of dimension m , which is smoothly depending on a vector of real

parameters )(p nppp ,..., 21=  and  is a continuous periodic function of the time ),(),( pGpG Ttt += , T being a

period. We denote linear independent solutions of system (1) as )(x,),(x),(x m21 ttt  and form out of them a
fundamental matrix [ ])(x,),(x),(x)X( m21 tttt = . The )X(t  matrix satisfying the equations

I)X(,GXX == 0 ,                                                    (2)
where I is the identity matrix of dimension m , is called a matriciant, and the matrix )(TXF =  is called a monodromy
matrix.
According to the Floquet theory, see Nayfeh and Mook [1], stability of system (1) is determined by multipliers
(eigenvalues of the monodromy matrix): if all the multipliers for their absolute value are less than one, the system is
asymptotically stable, and if at least one of them is greater than one, the system becomes unstable.
Now we assume that the vector of parameters takes a variation .ppp 0 ∆+=  Hence, the G  matrix, and therefore the
matriciant )(X t obtain variations. This accordingly leads to a change of the monodromy matrix F . The formulas for the
first and second derivatives of a monodromy matrix with respect to parameters are derived in the form of integrals over
the period
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where the zero subscript means that the corresponding value is taken at .0pp =  Note that to find derivatives (3) and (4) it

is necessary to know only the matriciants )(X0 t  and the derivatives of the G  matrix with respect to the parameters
taken at 0pp = . Using derivatives (3) and (4) a variation of the monodromy matrix can be given in the form
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Knowing the derivatives of the monodromy matrix we can calculate the value of this matrix in the vicinity of the initial
point 0p , and therefore estimate behavior of the multipliers responsible for the stability of system (1) when the problem
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parameters are changed. This is what we call sensitivity analysis of multipliers. Analysis of multipliers provides
information for determining stability and instability regions in the parameter space.

MECHANICAL EXAMPLE

As an example of the developed theory, we consider Bolotin's problem on dynamic stability of the trivial solution (plane
position) of a beam, see Bolotin [2]. The elastic beam is assumed to be simply supported at its ends and loaded by the
periodic bending moments )()( ttM Ω=Ω δϕ  in the plane of its maximum stiffness, where )(tϕ  is a π2 -periodic
function, Fig. 1. Bending-torsional vibrations off this plane are described by the equations
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Here, ),( txw  is the transverse deflection of the beam; ),( txθ and r are the torsion angle and the radius of inertia for
the beam's cross section, respectively; EJ and GI are the bending and torsion stiffnesses of the beam, respectively; m is
the mass per unit length of the beam; γ is the parameter of dissipative force (viscous friction coefficient); and 1d  and

2d  are fixed constants defining the bending and torsional viscous friction forces.

Figure 1. An elastic beam loaded by periodic bending moments.

The boundary conditions take the form
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where l is the beam length. The problem consists in finding parametric resonance domains in the three-dimensional
parameter space ,,Ωδ and γ . It turns out that the regions of the difference-type combination resonance are empty, and
only summation-type resonance takes place. The regions of the summation-type combination resonance at frequencies
close to knn /)( 210 ωω +=Ω , k=1,2,…  are determined by the formula
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where ka and kb  are the Fourier coefficients of the periodic function )(tϕ , and 21 , nn ωω  are the eigenfrequencies of the
conservative (undamped) system. Other mechanical examples including determination of the parametric resonance
regions of elastic columns of non-uniform cross-section loaded by longitudinal periodic forces, and column optimization
problems are presented in Seyranian, Solem and Pedersen [3], Seyranian [4], and Mailybaev and Seyranian [5].
Extended discussion of periodically excited structures and mechanical systems is given in a recent book by Seyranian
and Mailybaev [6].
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